Browse > Article
http://dx.doi.org/10.4014/jmb.1501.01049

Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression  

Yang, Fan (Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University)
Gong, Yanfen (Shenzhen Key Laboratory of Marine Bioresources and Ecology)
Liu, Gang (Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University)
Zhao, Shengming (Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University)
Wang, Juan (Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1101-1107 More about this Journal
Abstract
The role of CRE1 in a thermophilic fungus, Myceliophthora thermophila ATCC42464, was studied using RNA interference. In the cre1-silenced strain C88, the filter paper hydrolyzing activity and β-1,4-endoglucanase activity were 3.76-, and 1.31-fold higher, respectively, than those in the parental strain when the strains were cultured in inducing medium for 6 days. The activities of β-1,4-exoglucanase and cellobiase were 2.64-, and 5.59-fold higher, respectively, than those in the parental strain when the strains were cultured for 5 days. Quantitative reverse-transcription polymerase chain reaction showed that the gene expression of egl3, cbh1, and cbh2 was significantly increased in transformant C88 compared with the wild-type strain. Therefore, our findings suggest the feasibility of improving cellulase production by modifying the regulator expression, and an attractive approach to increasing the total cellulase productivity in thermophilic fungi.
Keywords
Myceliophthora thermophila; thermophilic fungi; RNA interference; cellulase; CRE1;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Voutilainen SP, Puranen T, Siika-Aho M, Lappalainen A, Alapuranen M, Kallio J, et al. 2008. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng. 101: 515-528.   DOI
2 Wang S, Liu G, Yu J, Tian S, Huang B, Xing M. 2013. RNA interference with carbon catabolite repression in Trichoderma koningii for enhancing cellulase production. Enzyme Microb. Technol. 53: 104-109.   DOI
3 Wang SW, Xing M, Liu G, Yu SW, Wang J, Tian SL. 2012. Improving cellulase production in Trichoderma koningii through RNA interference on ace1 gene expression. J. Microbiol. Biotechnol. 22: 1133-1140.   DOI
4 Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164.   DOI
5 Portnoy T, Margeot A, Linke R, Atanasova L, Fekete E, Sándor E, et al. 2011. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics 12: 269-281.   DOI
6 Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, et al. 2008. Secretome analysis of Phanerochaete chrysosporium strain C IRM-BRFM41 grown on softwood. Appl. Microbiol. Biotechnol. 80: 719-733.   DOI
7 Ries L, Belshaw NJ, Ilmén M, Penttilä ME, Alapuranen M, Archer DB. 2014. The role of CRE1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Appl. Microbiol. Biotechnol. 98: 749-762.   DOI
8 Santangelo GM. 2006. Glucose signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70: 253-282.   DOI
9 Soni SK, Soni R. 2010. Regulation of cellulase synthesis in Chaetomium erraticum. BioResources 5: 81-98.
10 Strauss J, Mach RL, Zeilinger S, Hartler G, Stöffler G, Wolschek M, Kubicek CP. 1995. Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 376: 103-107.   DOI
11 Strauss J, Horvath HK, Abdallah BM, Kindermann J, Mach RL, Kubicek CP. 1999. The function of CreA, the carbon catabolite repressor of Aspergillus nidulans, is regulated at the transcriptional and post-transcriptional level. Mol. Microbiol. 32: 169-178.   DOI
12 Sun J, Glass NL. 2011. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 6: e25654.   DOI
13 Kumar R, Singh S, Singh OV. 2008. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35: 377-391.   DOI
14 Li JK, Feng M, Zhang L, Zhang ZH, Pan YH. 2008. Proteomics analysis of major royal jelly protein changes under different storage conditions. J. Proteome Res. 7: 3339-3353.   DOI
15 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI
16 Li AN, Xie C, Zhang J, Zhang J, Li DC. 2011. Cloning, expression, and characterization of serine protease from thermophilic fungus Thermoascus aurantiacus var. levisporus. J. Microbiol. 49: 121-129.   DOI
17 Li DC, Li AN, Papageorgiou AC. 2011. Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzyme Res. DOI: 10.4061/2011/308730.   DOI
18 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25: 402-408.   DOI
19 Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL. 2008. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 74: 6554-6562.   DOI
20 Maheshwari R, Bharadwaj G, Bhat MK. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev. 3: 461-488.   DOI
21 Nakari-Setala T, Paloheimo M, Kallio J, Vehmaanperä J, Penttilä M, Saloheimo M. 2009. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl. Environ. Microbiol. 75: 4853-4860.   DOI
22 Brummelkamp TR, Bernards R, Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550-553.   DOI
23 Eveleigh DE, Mandels M, Andreotti R, Roche C. 2009. Measurement of saccharifying cellulase. Biotechnol. Biofuels 2: 21.   DOI
24 Collins CM, Murray PG, Denman S, Morrissey JP, Byrnes L, Teeri TT, Tuohy MG. 2007. Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii. Mycol. Res. 111: 840-849.   DOI
25 De la Serna I, Ng D, Tyler BM. 1999. Carbon regulation of ribosomal genes in Neurospora crassa occurs by a mechanism which does not require Cre1, the homologue of the Aspergillus carbon catabolite repressor, CreA. Fungal Genet. Biol. 26: 253-269.   DOI
26 Drysdale MR, Kolze SE, Kelly JM. 1993. The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene 130: 241-245.   DOI
27 Ilmén M, Thrane C, Penttilä M. 1996. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a fulllength and a truncated mutant form. Mol. Gen. Genet. 251: 451-460.
28 Jonkers W, Rep M. 2009. Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol. Microbiol. 74: 1100-1113.   DOI
29 Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B. 1993. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol. Microbiol. 7: 847-857.   DOI
30 Antoniêto AC, Dos Santos Castro L, Silva-Rocha R, Persinoti GF, Silva RN. 2014. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genet. Biol. 73C: 93-103.   DOI
31 Berka RM, Grigoriev IV, Otillar R, Salamov A, Grimwood J, Reid I, et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat. Biotechnol. 29: 922-927.   DOI
32 Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, Gilad Y. 2014. Impact of regulatory variation from RNA to protein. Science DOI: 10.1126/science.1260793.   DOI