Browse > Article
http://dx.doi.org/10.1016/j.net.2021.11.007

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations  

Bang, Shinhyo (Department of Nuclear Engineering, Seoul National University)
Kim, Ho-a (Department of Nuclear Engineering, Hanyang University)
Noh, Jae-soo (Atomic Creative Technology Co., Ltd.)
Kim, Donguk (Department of Nuclear Engineering, Seoul National University)
Keum, Kyunghwan (Department of Nuclear Engineering, Seoul National University)
Lee, Youho (Department of Nuclear Engineering, Seoul National University)
Publication Information
Nuclear Engineering and Technology / v.54, no.5, 2022 , pp. 1579-1587 More about this Journal
Abstract
The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.
Keywords
Spent nuclear fuel; Zircaloy-4 cladding; Zirconium hydride; Axial mechanical property; Dry storage; Hydride reorientation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.C. Bilone, T.A. Burtseva, Z. Han, Y.Y. Liiu, Used Fuel Disposition Campaign Embrittlement and DBTT of High-Burnup PWR Fuel Cladding Alloys, Argonne Natl. Lab., 2014. ANL-13/16; FCRD-UFD-2013-000401.
2 Gas transmission and distribution piping systems, ASME B31.8, American Society of Mechanical Engineers (2010).
3 P.A. Raynaud, D.A. Koss, A.T. Motta, Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet, J. Nucl. Mater. 420 (2012) 69-82.   DOI
4 J.R. Davis, in: Tensile Testing, second ed., ASM international, 2004.
5 G.J. DeSalvo, Theory and structural design applications of weibull statistics, Westinghouse Electr. Corp. Astronucl. Lab. (1970). No. WANL-TME-2688.
6 R.H. Doremus, Fracture statistics: a comparison of the normal, Weibull, and Type I extreme value distributions, J. Appl. Phys. 54 (1983) 193-198, 1.   DOI
7 S. Kim, J. Kang, Y. Lee, Comparison of hydride embrittlement of zircaloy-4 and Zr-Nb alloy cladding tubes, Proc. Korean Radioact. Waste Soc. (2021).
8 B. Almomani, Y.S. Chang, Failure probability assessment of SNF cladding transverse tearing under a hypothetical transportation accident, Nucl. Eng. Des. 379 (2021), 111265.   DOI
9 K.V. Bury, Statistical Models in Applied Science, Wiley, 1975.
10 W. Weibull, Royal Swedish Acad. Eng Sci. Proc. 151 (1939) 1.
11 R. Danzer, Some notes on the correlation between fracture and defect statistics: are Weibull statistics valid for very small specimens? J. Eur. Ceram. Soc. 26 (2006) 3043-3049, 15.   DOI
12 T.L. Sanders, K.D. Seager, P.R. Barrett, A.P. Malinauskas, R.E. Einziger, H. Jordan, T.A. Duffey, S.H. Sutherland, P.C. Reardon, A method for determining the spent-fuel contribution to transport cask containment requirements, Sandia Natl. Lab. (1992). SAND-90-2406; TTC-1019.
13 Z. Hozer, Zoltan, C. Gyori, L. Matus, M. Horvath, Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings, J. Nucl. Mater. 373 (2008) 415-423, 1-3.   DOI
14 R.P. Marshall, M.R. Louthan Jr., Tensile Properties Zircaloy with Oriented Hydrides, Du Pont de Nemours (EI) & Co. Savannah River Lab., 1962. No. TID-17372.
15 EPRI, Application of Critical Strain Energy Density to Predicting High-Burnup Fuel Rod Failure, EPRI, 2005. EPRI-1011816.
16 D. Kim, D. Kim, Y. Lee, Facilitate measurement of RHF by using PROPHET and its application, in: Transactions of the Korean Radioactive Waste Society Spring Meeting, 2021.
17 H. Lee, K. Kim, J.-S. Kim, Y.-S. Kim, Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition, Nucl. Eng. Technol. 52 (2020) 352-359, 2.   DOI
18 U.S. NRC, Testing for Post Quenching Ductility, U.S. NRC, 2014. DG-1262.
19 K.J. Geelhood, Fuel performance considerations and data needs for burnup above 62 GWd/MTU, Pacific Northwest Natl. Lab. (2019). PNNL-29368.
20 H.C. Chu, S.K. Wu, R.C. Kuo, Hydride reorientation in Zircaloy-4 cladding, J. Nucl. Mater. 373 (2008) 319-327, 1-3.   DOI
21 S. Arsene, J.B. Bai, P. Bompard, Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) zircaloy cladding tubes: part I. hydride embrittlement in stress-relieved, annealed, and recrystallized zircaloys at 20 C and 300 C, Metall. Mater. Trans. 34 (2003) 553-566, 3.   DOI
22 M.P. Puls, S.-Q. Shi, J. Rabier, Experimental studies of mechanical properties of solid zirconium hydrides, J. Nucl. Mater. 336 (2005) 73-80.   DOI
23 A.T. Motta, L. Capolungo, L.-Q. Chen, M.N. Cinbiz, M.R. Daymond, D.A. Koss, E. Lacroix, G. Pastore, P.-C.A. Simon, M.R. Tonks, Hydrogen in zirconium alloys: a review, J. Nucl. Mater. 518 (2019) 440-460.   DOI
24 Y. Ding, J.-.S. Kim, H. Kim, C. Won, S. Choi, S.H. Park, J. Yoon, Evaluation of anisotropic deformation behaviors in H-charged Zircaloy-4 tube, J. Nucl. Mater. 508 (2018) 440-450.   DOI
25 K.B. Colas, A.T. Motta, M.R. Daymond, J.D. Almer, Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction, J. Nucl. Mater. 440 (2013) 586-595.   DOI
26 P.-C.A. Simon, C. Frank, L.-Q. Chen, M.R. Daymond, M.R. Tonks, A.T. Motta, Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis, J. Nucl. Mater. 547 (2021), 152817.   DOI
27 Z. Duan, H. Yang, Y. Satoh, K. Murakami, S. Kano, Z. Zhao, J. Shen, H. Abe, Current status of materials development of nuclear fuel cladding tubes for light water reactors, Nucl. Eng. Des. 316 (2017) 131-150.   DOI
28 J.J. Kearns, Terminal solubility and partitioning of hydrogen in the alpha phase of zirconium, Zircaloy-2 and Zircaloy-4, J. Nucl. Mater. 22 (1967) 292-303.   DOI
29 E. Lacroix, A.T. Motta, J.D. Almer, Experimental determination of zirconium hydride precipitation and dissolution in zirconium alloy, J. Nucl. Mater. 509 (2018) 162-167.   DOI
30 J.B. Bai, C. Prioul, D. Francois, Hydride embrittlement in Zircaloy-4 plate: Part I. Influence of microstructure on the hydride embrittlement in Zircaloy-4 at 20 C and 350 C, Metall. Mater. Trans. 25 (1994) 1185-1197, 6.   DOI
31 Spent Fuel Project Office, U.S. NRC, Cladding Considerations for the Transportation and Storage of Spent Fuel, U.S. NRC, 2003. ISG-11 3.
32 F. Yunchang, D.A. Koss, The influence of multiaxial states of stress on the hydrogen embrittlement of zirconium alloy sheet, Metal. Trans. A 16 (1985) 675-681.   DOI
33 M.R. Louthan Jr., G.R. Caskey Jr., J.A. Donovan, D.E. Rawl Jr., Hydrogen embrittlement of metals, Mater. Sci. Eng. 10 (1972) 357-368.   DOI
34 H.C. Chu, S.K. Wu, K.F. Chien, R.C. Kuo, Effect of radial hydrides on the axial and hoop mechanical properties of Zircaloy-4 cladding, J. Nucl. Mater. 362 (2007) 93-103, 1.   DOI