• Title/Summary/Keyword: total potential optimization method

Search Result 29, Processing Time 0.03 seconds

Optimization of Heat Exchanger Network in the Steam Assisted Gravity Drainage Process Integration

  • Rho, Seon-Gyun;Yuhang, Zhang;Hwang, InJu;Kang, Choon-Hyoung
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.260-269
    • /
    • 2020
  • The Steam Assisted Gravity Drainage (SAGD) process is an enhanced method to extract oil from bitumen which involves surface and central process facilities. This paper describes the Central Process Facilities (CPF) of SAGD and proposes several retrofit plans to the Heat Exchanger Network (HEN). In this approach, the process integration scheme is applied to estimate the energy saving in HENs, and various cases are modeled in favor of a commercial simulator. Throughout this work, a minimum approach temperature of 10℃ is assumed. The results reveal that, due to the HEN optimization using process integration, the heating and cooling duties can be reduced to 29.68MW and 1.886MW, respectively. Compared with the Husky case, all cases considered in this study indicate a potential reduction of at least 6% in total cost, including investment and operation costs.

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

Design Method of Noise Performance of CMOS Preamplifier for the Active Semiconductor Neural Probe (신경신호 기록용 능동형 반도체 미세전극을 위한 CMOS 전치증폭기의 잡음특성 설계방법)

  • Kim, Kyung-Hwan;Kim, Sung-June
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.209-210
    • /
    • 1998
  • Noise characteristics of preamplifier, the most essential part of on-chip signal processing circuitry for the active semiconductor neural probe, is the important factor determining the overall signal-to-noise-ratio (SNR). We present a systematic design method for the optimization of SNR, based on the spectral characteristics of the electrode, circuit noise and extracelluar action potential. Analytical expression is derived to calculate total output noise power. Output SNR of 2-stage CMOS preamplifier is tailored to meet the given specification while the layout area is minimized.

  • PDF

DEVELOPMENT OF BUILDING INFORMATION MODEL FOR RESOURCES OPTIMIZATION IN CONSTRUCTION PROJECT

  • Gopal M. Naik;Rokhsareh Badamahgan
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.634-639
    • /
    • 2013
  • The aim of the study is to develop the 3D visualization of Building Information Model and integrated 4D model for optimization of resources in the construction project. This study discuss the process of methodology and creation of 4D model of the project and simulate it to monitor the workflow at the site. Different stages of the construction process and activities are generated by using Revit and MS Project. MS project has been used for creation of the schedules and these are linked with the Revit for 3D modeling. The time used as the fourth dimension and 4D model created by using Navisworks Time liner software. Narges shopping center is presented as a case study to realize the actual uses and benefits of Building Information Model (BIM). Narges shopping mall is located in Tehran, Iran. As a part of Hekmat master plan, Narges shopping center is an 11 stores building with a total area of 30000 Sq.m. This shopping and entertainment center is comprised of 150 retails and two multi-use public halls with a capacity of 400 persons each and underground parking with total 400 parking space. The main purpose of architecture was to create an urban public center along with its revolving, spiral like form and an ever changing continuous façade by means of different colors, materials, which is in harmony with the other building of the master plan. The approximate cost of the project is $17 million and duration of the project schedule is 30 months. The developed Building Information Model enabled us to identify the potential collisions or clashes between various structural and architectural systems. 4D model has been used for limiting the interaction between subcontractors installing the different systems so rework could be avoided and productivity maximized. It is also observed that the utility of BIM for construction stimulation and clash detection is the best suitable method. Clash detection before the implementation of work is highly recommended to avoid rework.

  • PDF

A Comparative QSPR Study of Alkanes with the Help of Computational Chemistry

  • Kumar, Srivastava Hemant
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • The development of a variety of methods like AM1, PM3, PM5 and DFT now allows the calculation of atomic and molecular properties with high precision as well as the treatment of large molecules with predictive power. In this paper, these methods have been used to calculate a number of quantum chemical descriptors (like Klopman atomic softness in terms of $E_n^{\ddag}\;and\;E_m^{\ddag}$, chemical hardness, global softness, electronegativity, chemical potential, electrophilicity index, heat of formation, total energy etc.) for 75 alkanes to predict their boiling point values. The 3D modeling, geometry optimization and semiempirical & DFT calculations of all the alkanes have been made with the help of CAChe software. The calculated quantum chemical descriptors have been correlated with observed boiling point by using multiple linear regression (MLR) analysis. The predicted values of boiling point are very close to the observed values. The values of correlation coefficient ($r^2$) and cross validation coefficient ($r_{cv}^2$) also indicates the generated QSPR models are valuable and the comparison of all the methods indicate that the DFT method is most reliable while the addition of Klopman atomic softness $E_n^{\ddag}$ in DFT method improves the result and provides best correlation.

Modeling of Electricity Market based on Cournot Theory in consideration of Emissions Trading (배출권 거래를 고려한 쿠르노 모형 기반의 전력시장 모델링 기법에 관한 연구)

  • Lee, Kwang-Ho;Kim, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • This paper proposes a Cournot model that can be used to analyze the strategic behaviors of generation companies which try to maximize their profits in an imperfectly competitive electricity and carbon markets. The proposed model consists of two parts. First, the strategic behaviors of generation companies are modeled based on the Cournot theory. Second, the market operation is modeled based on the assumption that the market operator tries to maximize the total social welfare in consideration of environmental welfare. To find the Nash equilibrium of the proposed model, the two-level optimization technique is used. The proposed method has been applied to an illustrative example of oligopolistic markets. We found that the proposed method has strong potential to analyze the influence of the strategic biddings of the generation companies and the impact of renewable generator on markets where the competitiveness of the markets is not fully developed.

A Two-Stage Stochastic Approach to the Artillery Fire Sequencing Problem (2단계 추계학적 야전 포병 사격 순서 결정 모형에 관한 연구)

  • Jo, Jae-Young
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.28-44
    • /
    • 2005
  • The previous studies approach the field artillery fire scheduling problem as deterministic and do not explicitly include information on the potential scenario changes. Unfortunately, the effort used to optimize fire sequences and reduce the total time of engagement is often inefficient as the collected military intelligence changes. Instead of modeling the fire sequencing problem as deterministic model, we consider a stochastic artillery fire scheduling model and devise a solution methodology to integrate possible enemy attack scenarios in the evaluation of artillery fire sequences. The goal is to use that information to find robust solutions that withstand disruptions in a better way, Such an approach is important because we can proactively consider the effects of certain unique scheduling decisions. By identifying more robust schedules, cascading delay effects will be minimized. In this paper we describe our stochastic model for the field artillery fire sequencing problem and offer revised robust stochastic model which considers worst scenario first. The robust stochastic model makes the solution more stable than the general two-stage stochastic model and also reduces the computational cost dramatically. We present computational results demonstrating the effectiveness of our proposed method by EVPI, VSS, and Variances.

Integration of computer-based technology in smart environment in an EFL structures

  • Cao, Yan;AlKubaisy, Zenah M.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.375-387
    • /
    • 2022
  • One of the latest teaching strategies is smart classroom teaching. Teaching is carried out with the assistance of smart teaching technologies to improve teacher-student contact, increase students' learning autonomy, and give fresh ideas for the fulfillment of students' deep learning. Computer-based technology has improved students' language learning and significantly motivating them to continue learning while also stimulating their creativity and enthusiasm. However, the difficulties and barriers that many EFL instructors are faced on seeking to integrate information and communication technology (ICT) into their instruction have raised discussions and concerns regarding ICT's real worth in the language classroom. This is a case study that includes observations in the classroom, field notes, interviews, and written materials. In EFL classrooms, both computer-based and non-computer-based activities were recorded and analyzed. The main instrument in this study was a survey questionnaire comprising 43 items, which was used to examine the efficiency of ICT integration in teaching and learning in public schools in Kuala Lumpur. A total of 101 questionnaires were delivered, while each responder being requested to read the statements provided. The total number of respondents for this study was 101 teachers from Kuala Lumpur's public secondary schools. The questionnaire was randomly distributed to respondents with a teaching background. This study indicated the accuracy of utilizing Teaching-Learning-Based Optimization (TLBO) in analyzing the survey results and potential for students to learn English as a foreign language using computers. Also, the usage of foreign language may be improved if real computer-based activities are introduced into the lesson.

Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties (이중 불확실성하의 공정-저장조 망구조 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.