DOI QR코드

DOI QR Code

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization

위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구

  • Jung, Tae-Won (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Kim, Byung-Mo (Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University) ;
  • Ha, Seung-Hyun (Department of Ocean Engineering, Korea Maritime and Ocean University)
  • 정태원 (한국해양대학교 해양공학과) ;
  • 김병모 (한국해양대학교 해양과학기술융합학과) ;
  • 하승현 (한국해양대학교 해양공학과)
  • Received : 2017.08.23
  • Accepted : 2017.10.16
  • Published : 2017.10.31

Abstract

In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.

해양구조물 등에서 해상 현장과 육상시설 사이에 물자나 운용 인력을 수송하기 위한 수단으로 헬리콥터가 주로 이용된다. 헬리데크는 헬리콥터가 해양구조물에 착륙하기 위해 필수적으로 탑재되는 구조물로서, 해양구조물의 종류나 탑재되는 위치 등에 따라 다양한 형태의 헬리데크가 존재한다. 그 중에서 캔틸레버식 헬리데크는 해양구조물의 탑사이드 공간 확보에 용이하며, 헬리콥터와의 충돌 등의 미연의 사고로부터 보다 안전하다. 본 논문에서는 캔틸레버식 헬리데크를 연구대상으로 선정하고, 이를 구성하고 있는 하부 트러스 구조에 대해서 위상 최적설계를 적용하였다. 또한 상용 구조해석 프로그램을 이용하여 유한요소 모델을 생성하고, 다양한 착륙 상황과 풍하중을 적용하여 구조해석을 수행하였다. 이를 바탕으로 헬리데크의 각 구조 부재에 발생하는 응력이 사용 재료의 허용응력을 넘지 않도록 부재의 세부 단면 치수를 결정하여, 보다 안전하면서도 경량화된 헬리데크 설계를 얻을 수 있다.

Keywords

References

  1. American Petroleum Institute(API) (1996) Recommended Practice for Planning, Designing, and Constructing Heliports for Fixed Offshore Platforms, 4th edition.
  2. ANSYS Inc. (2013) ANSYS Mechanical APDL Command Reference, Release 15.0.
  3. Bendsoe, M.P. (1989) Optimal Shape Design as a Material Distribution Problem, Struct. Optimi., 1, pp.193-202. https://doi.org/10.1007/BF01650949
  4. Choi, J.H. (2016) Structural Integrity Evaluation Method for Offshore Aluminum Helidecks, J. KSME, 56(1), pp.46-50.
  5. Civil Aviation Authority(CAA) (2013) Standards for Offshore Helicopter Landing Areas, CAP-437.
  6. Det Norske Veritas(DNV) (2001) Helicopter Decks, DNV-OS-E401.
  7. Guest, J.K., Asadpoure, A., Ha, S.H. (2011) Eliminating Beta-continuation from Heaviside Projection and Density Filter Algorithms, Struct. & Multidiscipl. Optimi., 44, pp.443-453. https://doi.org/10.1007/s00158-011-0676-1
  8. Guest, J.K., Prevost, J.H. (2006) Optimizing Multifunctional Materials: Design of Microstructures for Maximized Stiffness and Fluid Permeability, Int. J. Solids & Struct., 43, pp.7028-7047. https://doi.org/10.1016/j.ijsolstr.2006.03.001
  9. Ha, S.-H. (2016) Topology Design Optimization using Projection Method, J. Comput. Struct. Eng. Inst. Korea, 29(4), pp.293-299. https://doi.org/10.7734/COSEIK.2016.29.4.293
  10. Health & Safety Executive(HSE) (2004) Offshore Helideck Design Guidelines.
  11. International Civil Aviation Organization(ICAO) (1995) Heliport Manual, 3rd edition. Doc9261-AN/903.
  12. Koo, J.B., Park, J.S., Ha, Y.S., Jang, K.B., Suh, Y.S. (2014) Nonlinear Structure Response Analysis for Aluminum Helideck, The 24th International Society of Offshore and Polar Engineers (ISOPE) Conference, Busan, Korea, pp.977-984.
  13. Morrison, G. (2001) Helicopter safety offshore (Offshore Technology Report).
  14. Park, D.H., Park, Y.J., Kweon, B.C., Park, S.B., Lee, J.M. (2014) A Study on Optimal Design of Helideck using Finite Element Analysis, Proc. Comput. Struct. Eng. Ins. Korea, 27, pp.302-305.
  15. Park, D.H., Park, Y.J., Park, J.S., Kim, J.H., Kweon, B.C., Lee, J.M. (2014) Parametric Study for Helideck Design using Finite Element Analysis, J. Ocean Eng. & Tech., 28(5), pp.411-422. https://doi.org/10.5574/KSOE.2014.28.5.411
  16. Sigmund, O. (2001) A 99 line Topology Optimization Code Written in Matlab, Struct. & Multidiscipl. Optimi., 21, pp.120-127. https://doi.org/10.1007/s001580050176
  17. Sigmund, O. (2007) Morphology-based Black and White Filters for Topology Optimization, Struct. & Multidiscipl. Optimi., 33, pp.401-424. https://doi.org/10.1007/s00158-006-0087-x
  18. Zhou, M., Rozvany, G.I.N. (1991) The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization, Comput. Methods Appl. Mech. Eng., 89, pp.309-336. https://doi.org/10.1016/0045-7825(91)90046-9