DOI QR코드

DOI QR Code

A Comparative QSPR Study of Alkanes with the Help of Computational Chemistry

  • Kumar, Srivastava Hemant (Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University of Jerusalem)
  • Published : 2009.01.20

Abstract

The development of a variety of methods like AM1, PM3, PM5 and DFT now allows the calculation of atomic and molecular properties with high precision as well as the treatment of large molecules with predictive power. In this paper, these methods have been used to calculate a number of quantum chemical descriptors (like Klopman atomic softness in terms of $E_n^{\ddag}\;and\;E_m^{\ddag}$, chemical hardness, global softness, electronegativity, chemical potential, electrophilicity index, heat of formation, total energy etc.) for 75 alkanes to predict their boiling point values. The 3D modeling, geometry optimization and semiempirical & DFT calculations of all the alkanes have been made with the help of CAChe software. The calculated quantum chemical descriptors have been correlated with observed boiling point by using multiple linear regression (MLR) analysis. The predicted values of boiling point are very close to the observed values. The values of correlation coefficient ($r^2$) and cross validation coefficient ($r_{cv}^2$) also indicates the generated QSPR models are valuable and the comparison of all the methods indicate that the DFT method is most reliable while the addition of Klopman atomic softness $E_n^{\ddag}$ in DFT method improves the result and provides best correlation.

Keywords

References

  1. Singh, P. P.; Srivastava, H. K.; Pasha, F. A. Bioorg. Med. Chem. 2004, 12, 171 https://doi.org/10.1016/j.bmc.2003.11.002
  2. Singh, P. P.; Pasha, F. A.; Srivastava, H. K. QSAR & Comb. Sci. 2003, 22, 843 https://doi.org/10.1002/qsar.200330828
  3. Srivastava, H. K.; Pasha, F. A.; Singh, P. P. Int. J. Quantum Chem. 2005, 103, 237 https://doi.org/10.1002/qua.20506
  4. Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Mol. Divers. 2005, 9, 215 https://doi.org/10.1007/s11030-005-2711-x
  5. Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Int. J. Quantum. Chem. 2005, 104, 87 https://doi.org/10.1002/qua.20569
  6. Pasha, F. A.; Srivastava, H. K.; Singh, P. P. Bioorg. Med. Chem. 2005, 13, 6823 https://doi.org/10.1016/j.bmc.2005.07.064
  7. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989
  8. Kohn, W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974 https://doi.org/10.1021/jp960669l
  9. Hohenberg, P.; Kohn, W. Phys. Rev. B 1964, 136, 864 https://doi.org/10.1103/PhysRev.136.B864
  10. Chattaraj, P. K.; Cedillo, A.; Parr, R. G. J. Phys. Chem. 1991, 103, 7645
  11. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010 https://doi.org/10.1021/ja9924039
  12. De Proft, F.; Martin, J. M. L.; Geerlings, P. Chem. Phys. Leff. 1996, 250, 393 https://doi.org/10.1016/0009-2614(96)00057-7
  13. Geerlings, P.; De Proft, F.; Martin, J. M. L. In Theoretical and Computational Chemistry; Seminario, J., Ed.; Elsveir: Amsterdam, 1996; Vol-4 (Recent Developments in Density Functional Theory), p 773.
  14. De Proft, F.; Martin, J. M. L.; Geerlings, P. Chem. Phys. Lett. 1996, 256, 400 https://doi.org/10.1016/0009-2614(96)00469-1
  15. De Proft, F.; Geerlings, P. J. Chem. Phys. 1997, 106, 3270 https://doi.org/10.1063/1.473796
  16. Geerlings, P.; De Proft, F.; Langenaeker, W. Adv. Quantum Chem. 1999, 33, 303 https://doi.org/10.1016/S0065-3276(08)60442-6
  17. Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801 https://doi.org/10.1063/1.436185
  18. Thanikaivelan, P.; Subramanian, V.; Rao, R. J.; Nair, B. U. Chem. Phys. Lett. 2000, 323, 59 https://doi.org/10.1016/S0009-2614(00)00488-7
  19. Grigoras, S. J. Comput. Chem. 1990, 4, 493
  20. Murugan, R.; Grendze, M. P.; Toomey, J. E., Jr.; Katritzky, A. R.; Karelson, M.; Lobanov, V. S.; Rachwal, P. CHEMTECH 1994, 24, 17
  21. Balaban, A. T.; Denise, M.; Basak, S. C. J. Chem. Inf. Comput. Sci. 1999, 39, 758 https://doi.org/10.1021/ci990024t
  22. Katritzky, A. R.; Mu, L.; Lobanov, V. S.; Karleson, M. J. Phys. Chem. 1996, 100, 10400 https://doi.org/10.1021/jp953224q
  23. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA Training Manual 1995
  24. Katritzky, A. R.; Lobanov, W. S.; Karelson, M. Chem. Soc. Rev. 1995, 279
  25. Stanton, D. T.; Egolf, L. M.; Jurs, P. C.; Hicks, M. G. J. Chem. Inf. Comput. Sci. 1992, 32, 306 https://doi.org/10.1021/ci00008a009
  26. Katritzky, A. R.; Lobanov, V. S.; Karelson, M. J. Chem. Inf. Comput. Sci. 1998, 38, 28 https://doi.org/10.1021/ci970029v
  27. Cocchi, M.; De Benedetti, P. G.; Seeber, R.; Tassi, L.; Ulrici, A. J. Chem. Inf. Comput. Sci. 1999, 39, 1190 https://doi.org/10.1021/ci9903298
  28. Baroni, M.; Costantino, G.; Cruciani, G.; Riganelli, D.; Valigi, R.; Clementi, S. Quant. Struct.-Act. Relat. 1993, 12, 9 https://doi.org/10.1002/qsar.19930120103
  29. Needham, D. E.; Wei, I.-C.; Seybold, P. G. J. Am. Chem. Soc. 1988, 110, 4186 https://doi.org/10.1021/ja00221a015
  30. Stanton, D. T.; Egolf, L. M.; Jurs, P. C.; Hicks, M. G. J. Chem. Inf. Comput. Sci. 1992, 32, 306 https://doi.org/10.1021/ci00008a009
  31. Balaban, A. T.; Joshi, H.; Kier, L. B.; Hall, L. H. J. Chem. Inf. Comput. Sci. 1992, 32, 233 https://doi.org/10.1021/ci00007a010
  32. Balaban, A. T.; Kier, L. B.; Joshi, H. J. Chem. Inf. Comput. Sci. 1992, 32, 237 https://doi.org/10.1021/ci00007a011
  33. Stanton, D. T.; Jurs, P. C.; Hicks, M. G. J. Chem. Inf. Comput. Sci. 1991, 31, 301 https://doi.org/10.1021/ci00002a017
  34. Egolf, L. M.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1993, 33, 616 https://doi.org/10.1021/ci00014a015
  35. Egolf, L. M.; Wessel, M. D.; Jurs, P. C. J. Chem. Inf. Comput. Sci. 1994, 34, 947 https://doi.org/10.1021/ci00020a032
  36. Rucker, G.; Rucker, C. J. Chem. Inf. Comput. Sci. 1999, 39, 788 https://doi.org/10.1021/ci9900175
  37. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902 https://doi.org/10.1021/ja00299a024
  38. Stewart, J. J. P. J. Comp. Chem. 1989, 10, 209 https://doi.org/10.1002/jcc.540100208
  39. Stewart, J. J. P. MOPAC 2002 Fujitsu Limited: Tokyo, Japan, 2002
  40. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223 https://doi.org/10.1021/ja01004a002
  41. Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83, 3547 https://doi.org/10.1021/ja01478a001
  42. Mulliken, R. S. J. Chem. Phys. 1934, 2, 782. https://doi.org/10.1063/1.1749394
  43. Sanderson, R. T. Science 1955, 121, 207 https://doi.org/10.1126/science.121.3137.207
  44. Sanderson, R. T. Chemical Bonds and Bond Energy; Academic: New York, 1976
  45. Sanderson, R. T. Polar Covalence; Academic Press: New York, 1983
  46. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512 https://doi.org/10.1021/ja00364a005
  47. Clare, B. W. Aust. J. Chem. 1995, 48, 1385 https://doi.org/10.1071/CH9951385
  48. Parr, R. G.; Szentpaly, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922 https://doi.org/10.1021/ja983494x
  49. Singh, P. P.; Srivastava, S. K.; Srivastava, A. K. J. Inor. Nucl. Chem. 1980, 42, 521 https://doi.org/10.1016/0022-1902(80)80080-7
  50. Dewar, M. J. S.; Morita, T. F. J. Am. Chem. Soc. 1969, 91, 796 https://doi.org/10.1021/ja01032a002
  51. Singh, P. P. Coord. Chem. Rev. 1980, 32, 33 https://doi.org/10.1016/S0010-8545(00)80369-0
  52. Daniels, D. J. Surface-penetrating radar-IEE Radar, Sonar, Navigation and Avionics, Series 6; The Institute of Electrical: London, Engineers, pp320, 1996, p32
  53. Parthasarathi, R.; Subramanian, V.; Roy, D. R.; Chattaraj, P. K. Bioorg. Med. Chem. 2004, 12, 5533 https://doi.org/10.1016/j.bmc.2004.08.013
  54. Hall, L. H.; Vaughn, T. A. Med. Chem. Res. 1997, 7, 407
  55. Karelson, M.; Lobanov, V. S. Chem. Rev. 1996, 96, 1027 https://doi.org/10.1021/cr950202r

Cited by

  1. Diverse Models for the Prediction of HIV Integrase Inhibitory Activity of Substituted Quinolone Carboxylic Acids vol.345, pp.12, 2012, https://doi.org/10.1002/ardp.201100316
  2. Efficient estimation of MMGBSA-based BEs for DNA and aromatic furan amidino derivatives vol.31, pp.5, 2013, https://doi.org/10.1080/07391102.2012.703071
  3. Comparison of Computational Methods to Model DNA Minor Groove Binders vol.51, pp.3, 2009, https://doi.org/10.1021/ci100474n
  4. Theoretical Study of the Interconversions of Selected Isomers from C8H13+ System : A DFT level of Study vol.35, pp.2, 2009, https://doi.org/10.13005/ojc/350241