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Abstract 
 

It is not easy to reconstruct the geometrical characteristics of the distorted images captured by 

the devices. One of the most popular optimization methods is fast iterative shrinkage/ 

thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of 

the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. 

It contains three stages. At first stage, a series of adaptive penalty matrices are generated 

iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational 

complexity of the resulting sub-problem, a practical solution is presented, which is 

characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting 

the structure of the problem. Third, a correction step is introduced to improve the estimated 

accuracy. The numerical experiments of the proposed algorithm, in comparison to the 

favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its 

potential. 
 

 

Keywords: Image restoration; optimization method; total variation minimization 
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1. Introduction 

Image restoration has been studied for a long time [1][2], which is motivated by the spatial 

(blur) and point degradations of the original scene. This problem is ill-posed problem, varies in 

different situations. Each elements of the imaging system contributes to the degradations of 

the system. In the past years, this subject received an increasing amount of interest [42][43] 

[44][45][46]. The main goal of image restoration is to restore the original image from the 

degraded scene. A common imaging model consists of three components, i.e. the observed 

image s , the original scene v  and the presented noise  . This model can be summarized as 

follows 

s K v                                                                (1) 

where K  denotes the convolution operator on clean image v . And the noise level   varies in 

different conditions, which includes Gaussian, salt-and-pepper noise, speckle noise [3] and 

other distortion situations [4][5][6][7]. For recovering more edges and textures or improving 

the stability of the restoration procedure, some regularization terms [10] are developed to 

obtain a favorable solution. This procedure requires prior acknowledge necessary about the 

sampling process or the image data. 

A popular regularization term is total variation (TV) proposed by Rudin-Osher and Fatemi 

[8] (ROF), which can extract the image gradient and preserve edges. And its formation can be 

presented as follows 

21
( ) arg min ( ) ( ) arg min ( ) ,

2 F
v D v D

F v f v TV v K v s TV v 
 

 
      

 
          (2) 

where 
F

  denotes Frobenius norm on the matrix space 
m nD R  , the parameter   is a 

positive coefficient. It can be noted that TV regularization term would introduce some 

difficulties, such as non-smooth of objective function and enormous storage requirement. In 

the past decades, numerous researchers presented vast majority of optimization methods to 

tackle this problem. On the one hand, some improvements on this term were presented, e.g. 

non-local based total variation model [9]. On the other hand, various optimization techniques 

were presented for accelerating the reconstruction procedure, such as gradient projection-like 

methods, projected Newton method (PN), gradient projection-reduced Newton method 

(GPRN) and projection-conjugate gradient method [10], which can be viewed as a unified 

framework of steeped descent algorithm. 

Despite of existed optimization schemes, recently, some efficient optimization methods 

have been developed. These methods consist of proximal splitting schemes [14][15][17], 

iterative shrinkage/thresholding algorithm (IST) and its variants [11][12][23], sparse 

reconstruction by separable approximation (SpaRSA) [13]. Among these methods, IST-like 

algorithms were examined to be simple and efficient minimization methods. Proximal 

splitting scheme is a key procedure to the success of these methods. Its key idea is to solve the 

resulting sub-problem. Another mathematical programming method for this problem is the 

framework of augmented Lagrange method combined with the variable splitting techniques 

[18]. It has been devoted to image restoration, such as compressive magnetic resonance 

(CMR) image reconstruction [31], a hot air turbulence removal and object detection method 

[25], sparse representation (SR) based image restoration [26] and compressed sensing 

[27][28]. 
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In this paper, an effective image deblurring method, inspired by the woks in [19][30], is 

proposed. This scheme can provide a generalization representation of proximal conjugate 

algorithm in [19] for image de-blurring problem. The motivation of the proposed method is to 

handle the practical limitations in [19][30], e.g. the inaccuracy estimate of the sub-problem 

and the dimension limitation. Accordingly, the framework of adaptive proximal conjugate 

gradient (APCG) is proposed. The proposed method can divide into three stages mainly. First, 

an improved procedure for approximating inverse Hessian matrix is presented for the resulting 

sub-problem. Second, the sub-problem is solved by an adaptive regularization gradient 

projection method, characterized by an iterate-varying hyper-ellipsoidal based norm. Then, an 

efficient solution to this sub-problem is offered, which can be viewed as an incremental 

method on the problem and backtracking adaptively. Finally, a conjugate gradient method is 

applied to adjust the approximate error of the second stage. The presented method can exploit 

the special structure of the problem and improve the estimated accuracy. The convergence 

properties, presented in [19], guaranteed the effectiveness of the proposed method. At last, the 

simulation experiments and the performance evaluation, compared with the state-of-the-art 

methods, demonstrate the effectiveness and efficiency of the proposed method. 

The rest of the paper is organized as follows. In section 2, a review on the methods of IST 

and FISTA is presented. Section 3 demonstrates our framework and a solution to the resulting 

sub-problem. In Section 4, extensive experiments and discussion in details under several 

degradation situations are performed. At last, the conclusion on the proposed method is carried 

out. 

2. Preliminaries 

2.1 An overview of proximal splitting methods 

In this section, a short description of the schemes, i.e. the basic definitions of the proximal 

gradient scheme, the proximal Newton splitting scheme [19] and fast iterative/thresholding 

algorithm [12], are presented.  

Definition 2.1: proximal gradient scheme is expressed as follows 

2

2
( ) arg min ( ) ,

2

TV

v E

v pro x TV v v x






 
    

 
                     (3) 

where   is a positive scale parameter, viewed as penalty parameter, and sometimes can be 

configured with a constant parameter, such as Lipschitz constant. And E  denotes the matrix 

space 
m nE R  . Its theoretical results have been discussed and analyzed in [10].  

Definition 2.2: proximal Newton splitting scheme [19], which can be defined as follows 

21
( ) arg min ( ) ,

2

TV

H H
v E

v pro x TV v v x


 
    

 
                   (4) 

where H  is a generalization representation to the parameter   and assumed to be symmetric 

and positive definiteness matrix. And x  can be viewed as approaching point. The symbol H  

can be chosen to be a proper matrix. Solving the problem (4) can be considered as a procedure 

to weight different structures locally, and may bring in an alternate way toward the optimal 

solution. A general solution to this problem may be difficult because of ( )TV x  and the 

determination of the weighting matrix H . It can be observed that H  may have an influence 

on the storage requirement and computation complexity, which have not been investigated 
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fully in the work [11][12]. A general scheme for minimizing TV based prlobem is presented in 

Algorithm 1. 

Algorithm 1. Proximal splitting scheme for minimizing TV 

1. Input: 0v , the gradient of 
0( ) : ( )F v F v , the step size 

it  and the iteration times K  

2. for 1i   to K  do 

3.     
1 1( )i i i ix v t f v     

4.     , ( ) ( )TV

i i i Hv x pro x    

5. end for 

 

However, the performance of proximal splitting scheme depends on the implementation, 

including step size it , stopping condition, and initialization parameters despite of its 

apparently simplicity. A simple solution to 1 -based minimization problem by proximal 

splitting scheme is IST. The key procedure of this scheme can be given by 

, ( ) (| | )sgn( ),i i i ix x x                                         (5) 

where   is a chosen threshold for discriminating different coefficients. It can be seen that the 

procedure is piece-wise. However, this scheme suffers from low convergence rate and 

approximate accuracy. 

To accelerate the convergence rate of IST, a fast and simple numerical scheme, named fast 

iterative shrinkage/thresholding algorithm (FISTA) [12], is proposed. It should be noted that 

the proximal splitting method and IST-like algorithms involve with the operation on the 

approximation point 
1 1( )i i iv t f x    and the mechanism to obtain the step size it . 

2.2 Conjugate gradient method 

The conjugate gradient method is popular for solving large scale optimization problems. In 

this subsection, this scheme is intruded to remedy the local increment in FISTA [12]. Then, the 

backward step is employed for the proposed algorithm. Many of the special effects have been 

devoted to the conjugate gradient method [32]. A detailed discussion of the theoretical and 

performance picture of conjugate gradient method have been presented. The convergence 

results of the proposed method are similar to the work in [7]. So, the proofs of these results are 

ignored. A general procedure of conjugate gradient method, presented in algorithm 2, is 

introduced to the proposed algorithm. 

Algorithm 2. General congujate gradient method for non-smooth function 

1. Input: kv , the gradient of ( ) : ( )kF v F v , the step size 
k  

2. Repeat untile convegence 

3. ( )k kp F v   

4. 1k k k kd p d    

5. % choose a step length 0k   

6.      ( , )i i k kC p v   

7.     1k k k kv v d    
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The symbol ( )C   denotes the procedure for obtaining the conjugate gradient update parameter 

that belongs to a real number. 
2

1

1 2

ˆ( )
ˆ( , )

( )

iFR

i i i

i

F v
C v v

F v









                                                  (6) 

1 1 1

1 2

ˆ ˆ( ), ( ) ( )
ˆ( , )

( )

i i iPRP

i i i

i

F v F v F v
C v v

F v

  



  



               (7) 

FR

iC was developed by Fletcher and Reeves [35]. 
PRP

iC , proposed by Polak and Ribiere and 

Polyak [36][37], behaves a better way in a practical way. Although there are some classical 

methods for choosing this parameter, Eq.(7) is mainly employed in this paper. We extended 

the algorithm by combining classical general descent algorithm and line search by choosing 

adaptive step size. The details of these steps are presented in algorithm 3. 

3. Proposed method 

3.2 Adaptive proximal-conjugate gradient method 

The principle of the proposed framework is to solve the problem Eq.(2) through striking a 

balance between the effort expended at each iteration to solve the corresponding sub-problem 

and the number of iterations required for convergence. The main challenges of the proposed 

framework have three aspects. On the one hand, when the dimensions growing, especially, the 

calculation of the approximate inverse Hessian matrix 
1

iH 
 is required to be a suitable 

formation. Unfavorably, FISTA has not been explored this problem. The accuracy of the 

proposed framework is completely determined by the approximate accuracy of the 

sub-problem. Furthermore, the relative cost of the steps of many optimization methods 

changes when the problem becomes large. Then, certain difficulties arise.  

The proposed method for total variation minimization problem, including three stages, is 

presented in algorithm 3. First stage in the step 3 is provided for overcoming the limitations in 

[19][30]. It should be noted that this matrix is assumed to be symmetric and positive matrix. 

Second stage in the step 4 can convert Eq.(3) into a general formation Eq.(4). Or more 

precisely, the resulting problem can be viewed as hyper-ellipsoidal norm based sub-problem 

defined in Eq.(8). It should be noted that this generalized representation can product 

ellipsoidal-norm changes locally. The third stage, including the steps from 5 to 8, is employed 

for adjusting the approximate error through introducing conjugate gradient method. 
 

Algorithm 3. The framework of APCG 

1. Input: the observation data x , the stopping criterion tol , the step 

size it , the conjugate parameter   and the iteration itmes K  

2. for 1i   to K  do 

% first stage 

3.     1

1 1 1( )i i i iz v H f v

      

% second stage 

4.     1 1
ˆ ( )

i

TV

i H iv pro z   

% third stage 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 11, November 2015                                4609 

5.     1 1
ˆ

i i iv v     

    % Calculate the conjugate parameter i  

6.     
1

ˆ( , )i i i iC v v   

7.     1 1i i i id d      

    %  a suitable  i  step size it  

8.     1 1i i i iv v t d    
9. end for 

10. until terminated by the suitable stopping conditions 
 

The matrix 
1

iH 
 is not presented to approximate the toeplitz matrix simply. Its goal is to 

provide a more accurate and positive definiteness penalty parameter matrix to the sub-problem 

in step 4. The practical importance of 
1

iH 
 can be presented in many ways. First, based the 

presentation in the literature [39], the matrix 
1

iH 
 generalizes the representation of penalty 

parameter and dominates the progress toward the feasible solution. Second, empirical 

experiments, presented in FISTA and alternative direction multiplier method (ADMM) [40], 

indicate that the selection of 
1

iH 
 is very important. Some theoretical analyses were presented 

in [19][39][41]. 
1

iH 
 can be calculated in Algorithm 4. It can be noted that this matrix is 

updated iterate-to-iterate. This algorithm can provide various formations of approximate 

inverse Hessian matrix. 

Remark 1: An approximate solution of the step 4 is presented in algorithm 4. This solution of 

the sub-problem is improved from the work in [12], which can be expressed as follows 

2

1 1

1
( ) arg min ( ) .

2i i

TV

H i i H
v E

pro z TV v v z 


 
   

 
                        (8) 

We provide this algorithm without proofs. The advantage of this algorithm can exploit the 

structure of 
1

iH 
 matrix directly, indicates the computation of the true Hessian matrix is 

bypassed. All the key aspects of algorithm 4 is the main difference to the work in [19][30]. 

Algorithm 4. A general approximation method to 
1

iH 
 

1. Input: the iterate 1, ,i ii v v , 0 1  , 
min max0     and 

stopping criteria tol  

2. 
1i i iv v    

3. 
1( ) ( )i i if v f v    

4. if  1i   then 

5.     
1

mintmpH I   

6.     0ie   

7. else 

8.     
2

,i i

BB

i

 



  

9.     min max[ , ]BB    
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10.     1

tmp BBH I   

11.     1

i tmp iH     

12. if  , i i F F
tol      then 

13.     0ie   

14. else 

15.     1 1( ) / ,i i tmp i i tmp i ie H H         

16.     end if 

17. end if 

18. 
1 1 ( )T

i tmp i iH H O e e    

 

Remark 2: The proposed method is improved from the work in [12]. It is extended to a more 

feasible solution by saving the storage requirement. This weighting scheme can improve the 

performance and reliability of the algorithm through searching the descent direction 

adaptively. 

Remark 3: The symbol ( )O   stands for the operation on 
T

k ke e , which can produce some 

special structure matrices [20], such as tri-diagonal matrix, up-arrowhead and 

down-arrowhead. In this paper, the tri-diagonal matrix is taken mainly. 

Remark 4: The proposed framework is different from the works [19][31] in several ways. 

First, the proposed framework extends the original scheme [31] by introducing the conjugate 

gradient method, which can reduce the approximate error in some degree. Second, the 

proposed method deals with the resulting problem by taking account into the special pattern of 

the matrix. A further benefit of this modification is that lower storage requirement and 

computational cost is required. Third, the computation of exact Hessian matrix is avoided, 

which can reduce the computational demand significantly when the dimension growing.  

Remark 5: For ADMM [40] and FISTA [12] based methods, there are many differences in 

many ways. First, the main difference lies in the update and the form of the penalty parameter 

[12]. In contrast, the proposed algorithm generalizes the penalty parameter into a full matrix 

penalty formation. Second, the solution to 1 -based sub-problem [40] is different to the 

proposed method. The application of IST in [40] may smooth local structures or texture 

components in some extent. The geometric illustration, offered in the reference [39], indicates 

the choice and the form of the penalty parameter has an important influence on the 

convergence process. In summary, the essential features of the proposed method are the 

bounded and hyper-ellipsoidal adaption algorithm. The convergence analysis of the proposed 

framework confirmed that it should be a novel algorithm for this problem. 

3.4 Some theoretical results of APCG 

Some notations: An iterative sequence 
iv  converges to 

*v . Based on the most effective 

technique by comparing the improvement at each step to the improvement at the previous step. 

An algorithm converges q -quadratically is denoted as follows: 

* *

1 ( ),i iv v Q v v                                                   (9) 

and the function ( )f v  assumed to be locally convex and 
2 f  to be locally Lipschitz  

continuous. Similarly, q -superlinearly is defined as follows 
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* *

1 ( ),i iv v Qs v v                                                   (10) 

The symbols Q  and Qs  are related to the rates of convergence of the presented method. 

And a method would be practicable if iterative process is the closeness to the required point 

with some rapidity. 

Convergence analysis of APCG: some assumptions and theoretical results against the 

iterative sequence generated by the APCG are presented. 

Lemma 1 [19]. Suppose ( )f v  is twice continuously differentiable and 
2 f  is locally 

Lipschitz continuous with constant  . If 
1

iH 
 satisfies Dennis-More criterion and their 

eigenvalues are bounded, then the unit step length satisfies the sufficient descent condition 

after sufficiently many iterations. 

Theorem 2. Suppose (1) ( )f v  is locally strongly convex with constant m , (2) 
2 f  is 

locally Lipschitz continuous with constant  , and (3) then the hyper-ellipsoidal adaption 

algorithm converges q -superlinearly to 
*v . 

Proof. The assumptions of Lemma 1 are satisfied; then the stage of the conjugate gradient 

satisfy the sufficient descent condition after many iterations: 

1 1i i i iv v t d                                                (11) 

where it  assumed to be equal to 1. Based on the convergence results (c.f. Theorem 3.3 in [19]), 

i.e. converges q -quadratically 

* *

1 1 ,phe phe

i i i iv v v v d v
m

 


                   (12) 

where 1

phe

i iv     denotes the proximal hyper-ellipsoids direction. It should be noted that 

the eigenvalues of hyper-ellipsoids matrix provided by Algorithm 3 is box-constrained, then 

the last term can be reformatted as follows 

0.5 0.52

1 1 1

1
( ( ) ) .phe

i i i i i id v f v H d d
m


  


                (13) 

The details of Eq. (13) referred the Proposition 3.5 in [19]. It is notable that the 
2 f  and 

1id 
, 

then it can be observed that 
*

1 1 1( ( ) ) ( ).i i i i i iv x H d v v d o d                     (14) 

Due to the results (Lemma 2 in [38]) and q -quadratically convergence (Theorem 3.3 [19]), 

then we can get 
* *

1 ( ) .i i id Q v v v v                                               (15) 

putting these expressions into Eq.(13), then we can get 
*

1 ( ),phe

i i id v Qs v v                                                   (16) 

considering the Eq.(16) and Eq.(12), then we can obtain 

2
* * *

1 ( ),phe

i i iv v v v o v v
m




                                     (17) 

at last, it can be seen that kv  converges to 
*v  q -superlinearly. 
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3.5 An approximate solution to the problem (2) 

The fundamental issues of the framework of APCG are the presence of 
1

iH 
 and the 

corresponding sub-problem. Moreover, the computational expenses of this framework are 

referred to two estimated procedures mainly, i.e. the solution to the sub-problem Eq.(6) and 

the conjugate gradient method. Based on 
1

iH 
 provided by algorithm 4, an improved scheme 

from the work [12], is proposed in algorithm 5. 
 

Algorithm 5. A hyper-ellipsoids regularization gradient projection method 

1. Input: the variable v , the obtaned 
1

iH 
, 

1

max max( ( ))idiag H   , 

the regularization parameter  , inner iterate number N  

2. Output: the optimal solution 
*v  

3. Initialization: 

4. 
( 1) ( 1)

1 1 0 0 1( , ) ( , ) (0 ,0 ), 1m n m nu r x y t       

5. for 1i   to K  do 

6.     
1

max

1
( ( ( , )))

8

T

i B i k kz L P v H L u r


   

7.     ( , ) [( , ) ]k k D k k kx y P u r z   

8.     

21 1 4

2

k

k

t
t

 
  

9.     1 1 1 1

1

1
( , ) ( , ) ( , )k

k k k k k k k k

k

t
u r x y x x y y

t
   




     

10. end for 

11. 
* 1[ ( , )]B i N Nv P v H L x y   % up to the stopping point 

 

Remark 6: The operation P   stands for the orthogonal projection operator on the convex set 

C . In this paper, the set C  is defined as a bound condition. For the symbol D , it denotes 

similar convex projection on the dual space. The real definition of the L  and the adjoint 

operator 
TL  can be found in [12]. 

4. Numerical experiments and discussion 

4.1 The experiment settings 

In this subsection, the experimental settings for evaluating the referred methods are 

presented. The IST [23], the FISTA [12], FTVD based method [40] (i.e. ADMM) and the 

proposed method are implemented in Matlab. The assessment procedures are performed on a 

work station shipped with an Intel processor Core2 Quad 2.66 GHz and 3G RAM. Some 

synthetic examples are applied to the proposed method, i.e. Gaussian (Gau) blur, uniform 

(Uni) blur and disk based blur. The Gaussian noise with zero mean and a variance 
2 310   

is added to the blurred image. In this paper, two criteria are used to measure the performance 

numerically, i.e. signal-to-noise (SNR) and structural similarity (SSIM) index [34]. 
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The settings of the experiments are described in Table 1. All experiments are designed and 

performed for some goals, such as numerical behavior of the sub-problem, sensitivity analyses 

of penalty parameter and noise-levels, a wide range of datasets and blurring operations. In 

order to have a fair comparison between FTVD based method and our method, the 

regularization parameter   is chosen to be 
45 10   from the row 3 to 5.  

All the required methods are performed with default parameters. Meanwhile, all the pixel 

intensity values are rearranged to the box bound from 0 to 1. And the inner iterative numbers 

for the sub-problem are chosen to 10. The image dataset can be downloaded from 

http://www.cipr.rpi.edu/resource/stills/index.html. CIPR datasets, contain about 101 images, 

including aerial (7), brodatz (53), canon (18) and Kodak (23). The code of FTVD is obtained 

from the web site: http://www.caam.rice.edu/~optimization/L1/ftvd. 
 

Table 1. The general configuration of the experiments 

No. Name Blur kernel Kernel Size Variance   2  

1 Airplane Gau 9 4 0.0010 0.001 

2 Lena  Gau 9 4 0.0010 0.001-0.01 

3 Lena Gau 9 4 0.0005 0.001 

4 Lena Gau 9 4 0.0005 0.001 

5 CIPR Gau, disk, Uni 9 4 or / 0.0005 0.001 

4.2 The first experiment on Airplane 

In this subsection, the visual perception and numerical performance of the experiment on 

the airplane (512 512 ) are demonstrated. The second row of Table 2 exhibits the maximum 

scores of the SNR and the SSIM, which are obtained by performing 100 iterates. It can be 

notable that the proposed method is better than other methods separately, which is more than 

1dB in term of the SNR. In another viewpoint on these objective results, the proposed method 

performs a better behavior. Fig. 1 demonstrates the observed data and the visual results of 

these methods. The restoration image is more similar to the original image. It can be noted that 

the proposed algorithm restores more local features, for example the textures, edges and 

shapes. As an evaluation of the reconstruction process, Fig.2 displays the curves of the SNR 

and SSIM at every iteration. The quantitative comparison of these methods indicates that our 

method is better than the other methods. 

  
a) The blurry and noisy image                                              b) IST [23] 

http://www.cipr.rpi.edu/resource/stills/index.html
http://www.caam.rice.edu/~optimization/L1/ftvd
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c) FISTA [12]                                              d) APCG 

Fig. 1. The reconstruction results of the first experiment (
31 10   ). (a) The observation image, (b) 

for IST, (c) for FISTA and (d) for APCG. 

 

 

  
a) The plot of SNR                                              b) The plot of SSIM 

Fig. 2. The SNR and the SSIM of the first experiment (
31 10   ). (a) for the SNR, (b) for the SSIM. 

 

Table 2. The numerical results of the 1
st
 and 2

nd
 experiments (

310  ) 

Image Algorithm SNR(dB) SSIM 
tolI  

Airplane 

IST [23] 13.8592 0.8670 100 

FISTA [12] 14.5131 0.8699 537 

APCG 15.7729 0.8852 770 

Lena 

IST [23]  12.6211 0.7923 100 

FISTA [12] 13.2072 0.7992 918 

APCG 14.0288 0.8177 776 
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a) The blurry and noisy image                                   b) IST [23] 

  
c) FISTA [12]                                       d) APCG 

Fig. 3. The reconstruction results of the 2
nd

 experiment. (a) The observation image, (b) for IST, (c) for 

FISTA and (d) for APCG. 

 

  

Fig. 4. The SNR and SSIM of the 2
nd

 experiment (
31 10   ). (a) for the SNR, (b) for the SSIM. 

 

4.3 An evaluation on the solutions to the sub-problem (8) 

In this subsection, an assessment on the sub-problem
i

TV

Hpro  was performed. It can be noted 

that is a identify matrix in FISTA based method. First, the reconstruction results were 

examined in Lena image. Second, the times of inner iteration for solving 
i

TV

Hpro  was measured 

and evaluated. These experiments can provide a comprehensive view on the numerical 

behavior of the proposed method.  
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The visual outcomes are presented in Fig.3. In comparison to the other methods, the 

proposed method can restore a sharper and clear latent image. As shown in Table 2, it is 

notable that the numerical results, based on the indices of the SNR and SSIM, imply that the 

proposed method is better than the other methods again. The total iterate numbers of APCG 

based method are presented in five column of Table 2. 

    
a) The first experiment                                  b) The second experiment 

Fig. 5. The inner iteration numbers of the first and second experiments (
31 10   ). 

 

The influence on the resulting sub-problem based is presented in Fig. 5. The five column of 

Table 2 presents the total iterate numbers 
100

1tol ii
I I


   by summarizing all the minor 

iterates 
iI  when solving Eq.(6). It is evident that the IST conducts the lowest iterate numbers. 

However, compared to the FISTA ( 837tolI  ), the proposed method achieves a more 

performance improvement and involves with a lower total iterate numbers ( 770tolI  ). This 

phenomenon can be observed in Fig. 5 carefully. Although the curve of FISTA decreases from 

10 to 6 slowly, it can be noted that the outcome of the APCG is mainly equal to 6 and hold it 

for many times, which can be observed in Fig. 5 about
50 100iI  

.  

4.4 Sensitivity analysis of penalty parameters 

In this subsection, some experiments are performed for observing the numerical behavior of 

FISTA and FTVD in various penalty parameters. In another view on these numerical results, it 

can be seen that the update process may not be effective in any iterate. In Table 3, the symbol 

* denotes the fail of the algorithm. The symbol   defined in FISTA is penalty parameter, and 

  for FTVD. It is notable that the generalization representation of the proposed framework 

suggests an alternative approach to this problem. When   in FTVD decreases, the behavior 

of the SNR history would act a different way.  
 

Table 3. The evaluation of the FISTA(  ) and FTVD( ) on 'Lena' image(
45 10   ) 

FISTA(  ) 1   2   4   6   8   APCG 

SNR(dB) * 13.8268 13.8261 13.7816 13.6977 14.8286 

SSIM * 0.8183 0.8183 0.8183 0.8176 0.8429 

FTVD(  ) 1   2   4   6   8   APCG 

SNR(dB) 14.7884 14.2542 13.9982 14.0300 14.0204 14.8286 

SSIM 0.8372 0.8289 0.8184 0.8190 0.8194 0.8429 
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4.5 Sensitivity analysis of noise-levels 

Fig. 6 demonstrates the influence of the noise-levels on these optimization methods. It also 

can be noted that the IST generates a more stable curve, which implies that it is not sensitive to 

the parameter
2 . These appearances may relate to the hard thresholding on the latent image. 

This operation may keep regional features away. For the APCG, although it behaves quite 

more sensitive to noise-levels increasingly, but it should be noted that its reconstruction results, 

evaluated by the indices of SNR and SSIM, are better than other methods roughly. 

  
a) The plot of SNR vs noise levels                 b) The plot of SSIM vs noise levels 

Fig. 6. Sensitivity analysis of noise-levels on Lena (
31 10   ) , (a) for the SNR, (b) for the SSIM. 

4.6 The numerical results of CIPR still images 

The performance of the proposed method is verified in many extended experiments. These 

experiments are performed in three different blur operations. Similar to the previous 

experiments, the better numerical results of the referred methods are displayed in bold.  

The outcomes of all these methods for typical degradation conditions are presented in Table 

4 and Table 5, separately about SNR and SSIM. It can be seen that our method fulfills a 

substantial performance improvement in comparison to the other methods. The last two rows 

present the mean and variance of the numerical results of these blurring conditions. The 

outcomes of these experiments about these four datasets indicate that our method can be 

applied to a wider variety of images. Meanwhile, it can be seen that the means and variances 

presented in Table 4 and Table 5 demonstrate that the proposed method behaves more stable 

than other methods. For the outcomes of the variance of SSIM, FTVD based method is better 

than other methods. Our approach is a natural extension in the context of proximal splitting 

scheme. In part, this is due to the introduction of APCG framework.  
 

Table 4. The average  SNR of CIPR still images(
45 10   ) 

Datasets Blur IST FISTA FTVD APCG 

Aerial 

Gaussian 7.7633 8.2151 8.8933 9.4915 

Uniform 8.1361 8.6773 9.3417 10.1482 

Disk 8.9940 9.4742 9.9633 10.9053 

Brodatz 

Gaussian 5.7726 6.2479 7.3100 8.4392 

Uniform 5.8361 6.4789 7.6429 8.6181 

Disk 7.6894 8.1613 8.9471 10.3089 

Canon 

Gaussian 17.3769 18.4123 18.5343 19.3459 

Uniform 17.6414 18.8424 19.3171 19.8065 

Disk 18.9354 19.9118 19.7843 21.1592 
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Kodak 

Gaussian 9.8484 10.4914 10.9186 11.6067 

Uniform 9.8957 10.5536 11.0471 11.7211 

Disk 11.3457 11.9445 12.1814 13.2898 

Average 

Gaussian 10.1903 10.841675 11.4140 12.2208 

Uniform 10.3773 11.1380 11.8372 12.5734 

Disk 11.7411 12.3729 12.7190 13.9158 

Variance 

Gaussian 5.0718 5.3366 4.9712 4.9292 

Uniform 5.1200 5.3994 5.1766 4.9856 

Disk 5.0291 5.2649 4.8999 4.9977 

 

Table 5. The average SSIM of CIPR still images (
45 10   ) 

Image Blur IST FISTA FTVD APCG 

 

Aerial 

Gaussian 0.6662 0.6763 0.6956 0.7100 

Uniform 0.6875 0.6988 0.7168 0.7360 

Disk 0.7404 0.7451 0.7672 0.7878 

 

Brodatz 

Gaussian 0.6737 0.6919 0.7162 0.7376 

Uniform 0.6816 0.7076 0.7330 0.7538 

Disk 0.7630 0.7750 0.7985 0.8219 

 

Canon 

Gaussian 0.9077 0.9162 0.8798 0.9266 

Uniform 0.9078 0.9217 0.8883 0.9322 

Disk 0.9304 0.9343 0.9047 0.9455 

 

Kodak 

Gaussian 0.7320 0.7464 0.7606 0.7737 

Uniform 0.7512 0.7661 0.7814 0.7975 

Disk 0.7830 0.7902 0.8089 0.8245 

Average 

Gaussian 0.7449 0.7577 0.7631 0.7870 

Uniform 0.7570 0.7736 0.7780 0.8049 

Disk 0.8042 0.8112 0.8198 0.8449 

Variance 

Gaussian 0.1123 0.1098 0.0824 0.0966 

Uniform 0.1053 0.1031 0.0773 0.0887 

Disk 0.0858 0.0842 0.0592 0.0691 

4.7 Discussion 

In this paper, we have show that the efficiency of APCG, which involves the unified 

framework and its approximate solution. It is obvious that the presented method acts a better 

way than other methods in term of the improvement on the SNR and SSIM, the significant 

decrement in total iterate numbers tolI , sensitivity analysis of penalty parameters and 

noise-levels. The numerical results and the visual inspection of the restoration pictures 

demonstrate an involvement of the generalization representation of the proximal term and an 

efficient strategy to linear search effectively, leading to the success of the proposed framework. 

In another viewpoint on this condition, the association of the generalized proximal term with 

the conjugate gradient restores more high frequencies information from the degraded image. 

Taken together, these results indicate that the combination of these elements is essential to the 

achievement of the reconstruction performance. In term of the indices of the SNR and the 

SSIM in CIPR datasets and blurring conditions, the outcomes of the proposed method are 

available for a variety of datasets. In the meanwhile, an insight on the inner iterate numbers 
iI  

at a single iterate of the APCG, presented in Fig. 5(a) and Fig. 5(b), implies that the 

approximate error at every iterate can be alleviated in some degree. The summary of total 

iterations exhibited in Table 2 verifies the effectiveness of the proposed method again. In 
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contrast to other methods, this difference may relate to the method used. It is possible that the 

composite framework with the hyper-ellipsoidal norm based proximal term and the 

backtracking line search mechanism lead to the success of the APCG.  

However, there are some limitations on our method. First, the FTVD based method, 

implemented by ADMM, provides a well balance between the complexity and the run-time of 

the algorithm. However, we argued that the proposed framework can provide a unified 

representation of penalty parameter. Second, the proposed method is required to calculate the 

Algorithm 4. Although this may introduce some computational expense, the reduction in the 

total iterate numbers of the solution to the sub-problem compensates this extra computational 

cost to some extent. Third, the storage of the matrix 
1

kH 
 may be required to be huge when the 

size of the problem growing. 

In this paper, an alternate approach is proposed to handle the existed problems of the work 

in [19][30]. Despite of the extra issues of APCG based method, the evaluation and outcomes 

of the experiments confirm us that the proposed method is superior to the other methods and is 

suitable for large-scale optimization problems. Thanks to the accurate estimation of the iterate 

variable, the proposed method behaves a better way in these experiments. 

5. Conclusion 

In this paper, an efficient optimization framework for the image de-blurring problem, named adaptive 

proximal conjugate gradient method, is presented. This framework can be viewed as a variable 

hyper-ellipsoidal norm based method, which is formulated by generating weighting matrix adaptively 

and offering a good linear direction. The proposed framework may be of functional significance to the 

other large scale problems. To deal with the practical limitations of the proposed framework, an 

approximation solution to the sub-problem is presented. Observed from the experiments, the proposed 

algorithm can provide an alternate approach to total variation minimization problem. The experiment 

results based on the pictorial and numerical results of the referred methods, indicate that the proposed 

method is superior to the other methods. 
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