• Title/Summary/Keyword: tool material

Search Result 1,961, Processing Time 0.034 seconds

A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing (DLP 기반 3D 프린팅으로 제조된 Al2O3 절삭공구의 기계적 물성 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Kim, Kyung-Min;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.508-514
    • /
    • 2019
  • In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.

A Study Based on Quantifying Theory for a Non-fiction Creation Tool : Focus on Comparative Analysis of and (정량화 이론을 활용한 논픽션 창작도구 모델 연구 : <소트 오피스> 및 <스토리헬퍼> 비교분석 중심으로)

  • Lyou, Chul-gyun;Park, Eun-kyung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.247-256
    • /
    • 2016
  • This paper points out that the existing digital story creation tools are biased in the field of entertainment storytelling, so it proposes a specialized tool for non-fiction creation. This paper selects Quantifying Theory to design this tool. When creating nonfiction storyline, it is important to have the appropriate combination between the actual events and fictional elements. A Gossip System, based on Quantifying Theory, is suitable for that work. Before designing a Gossip System as a nonfiction creation tool, this analysis evaluated that the Gossip System in and . As a result, the linked structure in is useful in searching for material for non-fiction creation, and the separated structure in is ideal for arranging dramatic events. This paper proposed a method of switching the fact to fiction through a combination of this two Gossip System structure. I conclude that this is the best method for non-fiction creation tool.

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

The Selection and Abrasion Assessment of Cutter on Shield Tunnelling in Weathered Soil - Seoul Subway Line 7 Extension, Construction Lot 703 (풍화암 지반에서의 쉴드 TBM 커터도구 선정 및 마모량 평가 - 서울지하철 7호선연장 703공구 중심으로)

  • Kim, Yong-Il;Lee, Sang-Han;Jeong, Du-Seok;Im, Jong-Yun;Park, Gwang-Jun;Park, Jun-Su
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.09a
    • /
    • pp.59-79
    • /
    • 2006
  • The successful execution of shield tunnelling depends on the cutting ability of cutter. So the selection of shape, size and material of cutter according to geology condition is important work. Since shield tunnelling method was first invented in 1881, the cutting tool for rock has been developed owing to various experiments and researches, the study for soil, however, is insufficient. This paper introduces the shield tunnelling that will be carried out on weathered rock section (920m) of Seoul Subway Line 7 Extension C703. The shape and the material of cutter are discussed required for execution without replacement of cutter tool as well as for advance of excavation efficiency. In addition the estimation method of cutter abrasion in case of excavation on weathered soil is proposed and verified. Specially, the coefficient of abrasion for different soil and cutter is proposed by means of investigation into construction example of foreign country.

  • PDF

Surface Characteristics based on Material and Process Changes in Surface Treatment using Fast Tool Servo (FTS를 이용한 나노표면개질공정의 공정변화와 소재에 따른 표면특성)

  • Kim, Mi Ru;Lee, Deug Woo;Lee, Seung Jun;Liang, Li;Kim, Jong Man;Jang, Nam-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.639-646
    • /
    • 2015
  • A treatment for improving the characteristics of a surface is very important in increasing the life of machine parts. Many studies have been carried out on the surface characteristics after such treatments. For enhanced eco-technology, an alternative to a conventional chemical surface treatment process is essential. Ultrasonic nano-crystal surface modification (UNSM) technology is a physical environmentally friendly surface treatment method. This technology was developed in domestic and currently being used. As the mechanism of UNSM technology, a ball tip attached to an ultrasonic vibration device strikes the metal surface at nearly 20,000 times per second. The resulting modified surface layer improves the surface characteristics. This paper describes a self-developed fast tool servo system applied to the UNSM process as a vibration module within a high-frequency bandwidth. After describing the surface modification process based on the material and process changes, the surface characteristics are compared.

Roughness Measurement of Hole Processing Surface for Mold Steel Using White Light Interferometer (백색광간섭계를 이용한 금형용 강재 구멍가공면의 조도 측정)

  • Lee, Seung-Chul;Kim, Kyeong-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.73-79
    • /
    • 2013
  • In this study, NIMAX material has been processed using the three-dimensional measuring instrument and white light interferometer. they were tested to roundness and surface roughness and results are as follows: As for a cutting characteristic, it indicated that F4 showed a lower result than 2F showed due to the high hardness of the material and showed a good result when spindle rotation speed and tool feed were low. As for the measurement of roundness through 3-Dimensional measuring machine, it indicated that 4F showed a good result like the condition of cutting component and that roundness showed a good result when spindle rotation speed of 1,700 rpm and tool feed speed of 85 mm/min were applied. As for the surface roughness of processing surface, Surface roughness showed better 4F than 2F and conditions of spindle rotation speed 1,700 rpm, tool feed rate 55 mm/min showed good results in the Ra $0.4025{\mu}m$.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

A study on the micro hole machining of Al2O3 ceramics ($Al_2O_3$ 세라믹의 미세구멍 가공에 관한 연구)

  • 윤혁중
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.37-42
    • /
    • 1997
  • This paper describes result of experiment of parameters affecting the micro hole drilling time, kind of assisting gas and it's pressure. The result reveals that parameter value of 0.08J, 20Hz, dwell time of 300 microseconds can be a good machining condition to make micro hole diameter range of 50-70${\mu}{\textrm}{m}$, Assistant gas such air, O2, Ar, N2 was adapted. Assistant gas of air makes heat affected zone enlarge due to burning of material, also it makes hole irregular and damage because of refusion stick to caused by chemical reaction with Al2O3 ceramic material. O2(99.9%) has good characteristic to get good drilling and smooth surface on pressure of 0.2kgf/$\textrm{cm}^2$, but it is expensive. Ar, N2 makes material burn and crack severely and proved to be an appropriate but, Ar was better than N2.

  • PDF

Cryogenic Machining of Open-Cell Silicone Foam (액화질소를 이용한 오픈 셀 실리콘 폼의 냉동 절삭조건 최적화)

  • Hwang, Jihong;Cho, Kwang-Hee;Park, Min-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • Open-cell silicon foam is difficult to cut using conventional machining processes because of its low stiffness. That is, open-cell silicon foam is easily pressed down when the tool is engaged, which makes it difficult to remove the material in the form of chip. This study proposes an advanced method of machining open-cell silicon foam by freezing the material using liquid nitrogen. Furthermore, the machining conditions are optimized to maximize the efficiency of material removal and minimize the usage of liquid nitrogen by conducting experiments under various machining conditions. The results show that open-cell silicone foam products with free surface can be successfully machined by employing the proposed method.

A Study on the Meaning of Trace in Sugimoto Takashi's Design (스기모토 타카시의 디자인에 나타나는 흔적의 의미에 관한 연구)

  • Suh, Jeong Yeon
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.51-60
    • /
    • 2015
  • Interior designer Sugimoto Takashi uses salvaged material and natural thing for aesthetical purpose. These material performs not just as fun stuff but as design tool in order to set up cultural meaning which modern society always lacks for. The method of communicating the meaning is the multi-layered trace on them. There are three types of trace. They are harsh texture of surface, untrimmed outline, and gathering & arrangement. Through these formation methods of trace, Sugimoto can suggest various curtural meanings such as vanishing value of old-fashioned lifestyle, primitive energy of nature, and sincere touch of somebody. As a result, the trace in Sugimoto's design is an endeavor to exist tradition(the long ago) and nature(the far away) in here-and-now interior space.