• 제목/요약/키워드: time-varying linear systems

검색결과 322건 처리시간 0.024초

LMI기법을 이용한 시변 불확정성을 갖는 선형 시스템의 강인 극점 배치 (Robust Pole Assignment for Time Varying Uncertain Linear Systems via LMI Approach)

  • 마삼선;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2287-2289
    • /
    • 2000
  • This paper focuses on the robust pole assignment for time varying uncertain linear systems in a specified disk. Based on Linear Matrix Inequality(LMI) approach, we give two sufficient conditions, one is for the analysis and another is for the design, that guarantee the robust pole assignment in a specified disk in the left half plane(L.H.P) while satisfying the robust stability. Since these conditions are expressed as LMI forms, we can easily check their feasibility using MATLAB control toolbox. Finally, we show by an example that our results are useful for analysis and design.

  • PDF

DELAY-DEPENDENT GLOBAL ASYMPTOTIC STABILITY ANALYSIS OF DELAYED CELLULAR NEURAL NETWORKS

  • Yang, Yitao;Zhang, Yuejin
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.583-596
    • /
    • 2010
  • In this paper, the problem of delay-dependent stability analysis for cellular neural networks systems with time-varying delays was considered. By using a new Lyapunov-Krasovskii function, delay-dependant stability conditions of the delayed cellular neural networks systems are proposed in terms of linear matrix inequalities (LMIs). Examples are provided to demonstrate the reduced conservatism of the proposed stability results.

변수 불확실성과 시변 시간지연을 가지는 특이시스템의 지연 종속 강인 비약성 안정화 (Delay-dependent Robust and Non-fragile Stabilization for Descriptor Systems with Parameter Uncertainties and Time-varying Delays)

  • 김종해
    • 전기학회논문지
    • /
    • 제57권10호
    • /
    • pp.1854-1860
    • /
    • 2008
  • In this paper, we deal with the problem of delay-dependent robust and non-fragile stabilization for descriptor systems with parameter uncertainties and time-varying delays on the basis of strict LMI(linear matrix inequality) technique. Also, the considering controller is composed of multiplicative uncertainty. The delay-dependent robust and non-fragile stability criterion without semi-definite condition and decomposition of system matrices is obtained. Based on the criterion, the problem is solved via state feedback controller, which guarantees that the resultant closed-loop system is regular, impulse free and stable in spite of all admissible parameter uncertainties, time-varying delays, and controller fragility. Numerical examples are presented to demonstrate the effectiveness of the proposed method.

Time-Varying Multipath Channel Estimation with Superimposed Training in CP-OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • ETRI Journal
    • /
    • 제28권6호
    • /
    • pp.822-825
    • /
    • 2006
  • Based on superimposed training methods, a novel time-varying multipath channel estimation scheme is proposed for orthogonal frequency division multiplexing systems. We first develop a linear least square channel estimator, and meanwhile find the optimal superimposed sequences with respect to the channel estimates' mean square error. Next, a low-rank approximated channel estimator is obtained by using the singular value decomposition. As demonstrated in simulations, the proposed scheme achieves not only better performance but also higher bandwidth efficiency than the conventional pilot-aided approach.

  • PDF

미지의 선형 시스템에 대한 실시감 회귀 모델링 (Real-time recursive identification of unknown linear systems)

  • 최수일;김병국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.548-553
    • /
    • 1992
  • In this paper and recursive version of orthogonal ARMA identification algorithm is proposed. The basic algorithm is based on Gram-Schmidt orthogonalization of automatically selected basis functions from specified function space, but does not require explicit creation of orthogonal functions. By using two dimensional autocorrelations and crosscorrelations of input and output with constant data length, identification algorithm is extended to cope slowly time-varying or order-varying delayed system.

  • PDF

비선형 슬라이딩 평면의 설계를 위한 LMI 접근법 (An LMI Approach to Nonlinear Sliding Surface Design)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1197-1200
    • /
    • 2010
  • The problem of designing a nonlinear sliding surface for an uncertain system is considered. The proposed sliding surface comprises a linear time invariant term and an additional time varying nonlinear term. It is assumed that a linear sliding surface parameter matrix guaranteeing the asymptotic stability of the sliding mode dynamics is given. The linear sliding surface parameter matrix is used for the linear term of the proposed sliding surface. The additional nonlinear term is designed so that a Lyapunov function decreases more rapidly. By including the additional nonlinear term to the linear sliding surface parameter matrix we obtain a nonlinear sliding surface such that the speed of responses is improved. We also give a switching feedback control law inducing a stable sliding motion in finite time. Finally, we give an LMI-based design algorithm, together with a design example.

Robust Discretization of LTI Systems with Polytopic Uncertainties and Aperiodic Sampling

  • Lee, Dong Hwan;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1255-1263
    • /
    • 2015
  • In the previous work, the authors studied the problem of robust discretization of linear time-invariant systems with polytopic uncertainties, where linear matrix inequality (LMI) conditions were developed to find an approximate discrete-time (DT) model of a continuous-time (CT) system with uncertainties in polytopic domain. The system matrices of obtained DT model preserved the polytopic structures of the original CT system. In this paper, we extend the previous approach to solve the problem of robust discretization of polytopic uncertain systems with aperiodic sampling. In contrast with the previous work, the sampling period is assumed to be unknown, time-varying, but contained within a known interval. The solution procedures are presented in terms of unidimensional optimizations subject to LMI constraints which are numerically tractable via LMI solvers. Finally, an example is given to show the validity of the proposed techniques.

시변 시간지연을 갖는 대규모 불확정성 선형 시스템의 강인 안정성 (Robust Stability of Large-Scale Uncertain Linear Systems with Time-Varying Delays)

  • 김재성;조현철;이희송;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.463-465
    • /
    • 1998
  • In this paper, we consider the problem of robust stability of large-scale uncertain linear systems with time-varying delays. The considered uncertainties are both unstructured uncertainty which is only known its norm bound and structured uncertainty which is known its structure. Based on Lyapunov stability theorem and $H_{\infty}$ theory. we present uncertainty upper bound that guarantee the robust stability of systems. Especially, robustness bound are obtained directly without solving the Lyapunov equation. Finally, we show the usefulness of our results by numerical example.

  • PDF

시변 불확정성을 갖는 선형 시스템의 강인 극점 배치 (Robust Pole Assignment of Linear Systems with Time-Varying Uncertainty)

  • 김진훈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권1호
    • /
    • pp.31-35
    • /
    • 1999
  • In this paper, we consider the robust pole assignment and the upper bound of quadratic cost function for the linear systems with time-varying uncertainy. The considered uncertainties are both the norm bounded unstructured case and the structured case that has the matrix polytope type uncertain structure. We derve conditions that guarantee the robust pole assignment inside a disk in the L.H.P. and the robust stability. Also, we derive the upper bound of quadratic cost for thil pole assigned systems. Finally, we show the usefulness of our results by an example.

  • PDF

불확정성 선형 시스템의 강인 극점 배치 (Robust Pole Assignment of Uncertain Linear Systems)

  • 김재성;김진훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.589-591
    • /
    • 1999
  • In this paper, we consider the robust pole assignment for linear system with time-varying uncertainty. The considered uncertainty is an unstructured uncertainty. Based on Lyapunov stability and linear matrix inequality technique, we present a condition that guarantees the robust pole assignment inside a circular disk and the robust stability of uncertain linear systems. Finally, we show the usefulness of our results by an example.

  • PDF