• 제목/요약/키워드: time-dependent creep

검색결과 257건 처리시간 0.025초

크리프를 고려한 콘크리트 사장교의 오차 요인 추정 (Estimation of error factors in concrete cable-stayed bridge considering creep)

  • 박종범;조재열;박정일;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.387-388
    • /
    • 2009
  • 콘크리트 사장교는 콘크리트의 시간의존 효과를 고려하여 케이블 장력을 조정할 필요가 있다. 본 연구는 콘크리트의 시간의존효과 중 크리프를 오차요인으로 고려하여 콘크리트 사장교에서 처짐과 케이블 장력의 측정값들로부터 크리프 계수를 추정하는 방법을 제안하고 크리프 계수 오차의 영향을 분석하였다.

  • PDF

차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석 (Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System)

  • 박재학;정종철;허건수;정정주
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

고온 보일러 헤더의 잔여수명평가 사례 연구 (A Case Study of Remaining Life Assessment for Boiler Header)

  • 백운봉;이해무;박종서;김동진;윤기봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.274-279
    • /
    • 2001
  • Creep-fatigue crack growth behavior was experimentally measured particularly when a crack was located in the heat affected region of 1Cr-0.5Mo steel. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the $C_t$-parameter. It was found that the crack growth rates were the highest when the crack path was located along the fine-grained heat affected zone(FGHAZ). Cracks located in other heat affected regions had a tendency to change the crack path eventually to FGHAZ. Creep-fatigue crack growth law of the studied case is suggested in terms of $(da/dt)_{avg}$ vs. $(C_t)_{avg}$ for residual life assessment.

  • PDF

$C_t$를 사용한 용접열영향부 균열의 크리프-피로 균열성장거동 특성화 (Characterization of Creep-Fatigue Crack Growth Behavior for HAZ Crack Using {TEX}$C_{t}${/TEX})

  • 백운봉;서창민;윤기봉
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.89-95
    • /
    • 2000
  • Creep-fatigue crack growth behavior at the heat affected zone of 1Cr-0.5Mo steel weldment has been experimentally studied. Load hold times of the tests for trapezoidal fatigue waveshapes were varied among 0, 30, 300 and 3,600 seconds. Time-dependent crack growth rates were characterized by the {TEX}$C_{t}${/TEX} estimated with the equation proposed by the previous finite element analysis work. It was concluded that the {TEX}$C_{t}${/TEX} values calculated from the properties of parent metal were quite comparable to the accurate {TEX}$C_{t}${/TEX} values calculated from both of weld and parent metals. Scatter of data was claimed due to the difference of exact location of the cracks in HAZ. The cracks have a tendency to change their path from the original location eventually to the relatively soft HAZ(ie, near-FGHAZ region, fine grained heat affected zone).

  • PDF

지반재료 구성모델에 있어서의 데미지 (Damage in Constitutive Modeling for Soils)

  • 김대규
    • 한국산학기술학회논문지
    • /
    • 제5권5호
    • /
    • pp.471-479
    • /
    • 2004
  • 본 연구에서는 점성토에 있어서 범용으로 적용 가능한 시간의존적 구성방정식을 유도하였다. 데미지 법칙을 유도된 구성방정식에 포함하였으며 이를 활용하여 비배수 크리프거동을 예측하였다. 구성방정식의 수학적 물리적 유도는 가능한 적은 모델정수를 포함시키는 원칙에서 수행되었다. 유도된 구성방정식을 활용하여 예측한 크리프 거동은 점성토의 중요한 시간 의존적 거동인 비배수 크리프파괴를 포함하는 실험결과와 잘 부합하였다. 유도된 구성모델은 단순함에 비해 크리프 예측 능력이 뛰어난 것으로 평가된다.

  • PDF

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.

이중합성 박스 거더의 재령종속적 거동실험 및 해석 (Experimental Observation of Double Composite Box Girders subjected to Concrete Creep and Shrinkage)

  • 강병수;김정현;곽동석;홍인택;이용학
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.169-172
    • /
    • 2003
  • Time dependent deflections of double composite box girders are investigated based on the on going laboratory experiments scheduled for 3months long. Two of 2-span double composite box girders with 2.5m each span length are cast and time dependent behaviors are measured using 30 strain gages and 2 LVDTs after 5 days' curing. The measured experimental results are compared with the numerical predictions performed based on the one dimensional finite element method adopting beam element. The FEM formulation adopts the time dependent concrete constitutive model which is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. A good agreement between the measured and predicted results are observed and the effects of the bottom concrete placed at the negative moment region of the bridge girder are discussed.

  • PDF

PCS 합성거더교의 시간에 따른 응력 변화 추정 (Estimation of Stress Variations on Time Effects in Prestressed Concrete Composite Girder Bridges)

  • 윤지훈;김수만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.319-322
    • /
    • 2005
  • When a concrete structure is subjected to load, its response is both immediate and time dependent. Under sustained load, the deformation of a structure gradually increases with time and eventually may be many time greater than its instantanneous value. The gradual development of strain with time is caused by creep and shrinkage. On this study, to estimate of stress variations on time effects in partially prestressed concrete composite girder bridges, computer program applied Age-adjusted Effective Modulus Method(AEMM) in used.

  • PDF

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.