DOI QR코드

DOI QR Code

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi (Civil Engineering Department, University of Engineering and Technology Lahore) ;
  • Ali Murtaza Rasool (Diamer Bahsa Dam Consultant Group (DBCG)-National Engineering Services Pakistan (NESPAK)) ;
  • Iftikhar Ahmad (Civil Engineering Department, University of Engineering and Technology Lahore) ;
  • Muhammad Ali (Diamer Bahsa Dam Consultant Group (DBCG)-National Engineering Services Pakistan (NESPAK)) ;
  • Fawad S. Niazi (Department of Civil and Mechanical Engineering, Purdue University Fort Wayne)
  • Received : 2023.07.21
  • Accepted : 2024.02.02
  • Published : 2024.02.25

Abstract

This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Keywords

Acknowledgement

The authors gratefully acknowledge the Department of Civil Engineering, University of Engineering and Technology, Lahore, Pakistan, for providing research, financial, and experimental facilities. Experts from National Engineering Services Pakistan (NESPAK) and Purdue University Fort Wayne are gratefully acknowledged for providing technical assistance.

References

  1. ACI Committee 209 (1994), Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structure, American Concrete Institute.
  2. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
  3. ASTM C136 (2019), Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, Annu B ASTM Stand 04, 1-5.
  4. ASTM C157 (2017), Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete, ASTM Int 08, 1-7.
  5. ASTM C39 (2023), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Am. Soc. Test. Mater.
  6. ASTM C490 (2021), Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, Am Soc Test Mater., 1-5.
  7. ASTM C512 (2015), Standard Test Method for Creep of Concrete in Compression, ASTM Int., 1-5.
  8. ASTM C618 (2022), Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, Annu B ASTM Stand.
  9. Atrushi, D.S. (2003). Tensile and Compressive Creep of Young Concrete: Testing and Modelling, Fakultet for Ingeniorvitenskap og Teknologi.
  10. Bazant, Z.P. and Bajwa, B. (1993), "Discussion of "Creep and shrinkage revisited" by N.J. Gardner and J.W. Zhao", ACI Mater. J., 236.
  11. Bazant, Z.P. and Murphy, W.P. (1995). "Creep and shrinkage prediction model for analysis and design of concrete structures-model B3", Materiaux et Constructions, 28(180), 357-365.
  12. Bissonnette, B., Pierre, P. and Pigeon, M. (1999), "Influence of key parameters on drying shrinkage of cementitious materials", Cement Concrete Res., 29, 1655-1662. https://doi.org/10.1016/S0008-8846(99)00156-8.
  13. Castel, A., Foster, S.J., Ng, T., Sanjayan, J.G. and Gilbert, R.I. (2016), "Creep and drying shrinkage of a blended slag and low calcium fly ash geopolymer concrete", Mater. Struct. Constr., 49, 1619-1628. https://doi.org/10.1617/s11527-015-0599-1.
  14. Collins, F. and Sanjayan, J.G. (2000), "Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete", Cement Concrete Res., 30, 1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6.
  15. Dow, C. and Glasser, F.P. (2003), "Calcium carbonate efflorescence on Portland cement and building materials", Cement Concrete Res., 33, 147-154. https://doi.org/10.1016/S0008-8846(02)00937-7.
  16. Duxson, P., Fernandez-Jimenez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S. (2007), "Geopolymer technology: The current state of the art", J. Mater. Sci., 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z.
  17. El Ouni, M.H., Raza, A., Khalid, B., Ahmed, A., Jameel, M.S. and Alashker, Y. (2023), "Axial strength of FRP-reinforced geopolymeric concrete members: A step towards sustainable construction", Struct. Eng. Mech., 86(5), 687-704. https://doi.org/10.12989/sem.2023.86.5.687.
  18. Gedam, B.A., Bhandari, N.M. and Upadhyay, A. (2014), "An apt material model for drying shrinkage and specific creep of HPC using artificial neural network", Struct. Eng. Mech., 52(1), 97-113. https://doi.org/10.12989/sem.2014.52.1.097.
  19. Ghafoor, M.T., Khan, Q.S., Qazi, A.U., Sheikh, M.N. and Hadi, M.N.S. (2021), "Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature", Constr. Build. Mater., 273, 121752. https://doi.org/10.1016/j.conbuildmat.2020.121752.
  20. Gilbert, R.I. (2002), "Creep and shrinkage models for high strength concrete-Proposals for inclusion in AS3600", Aust. J. Struct. Eng., 4, 95-106. https://doi.org/10.1080/13287982.2002.11464911.
  21. Gray, D.H. and Lin, Y.K (1971), "Engineering properties of compacted fly ash", J. Soil Mech. Found. Div., 98(4), 361-380. https://doi.org/10.1061/jsfeaq.0001744.
  22. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low-calcium fly ash-based geopolymer concrete", Research Report GC 1, Faculty of Engineering, Curtin University of Technology, Perth, Australia.
  23. Hardjito, D., Wallah, S.E., Sumajouw, D.M. and Rangan, B.V. (2004), "Factors influencing the compressive strength of fly ash-based geopolymer concrete", Civil Eng. Dimens., 6(2), 88-93.
  24. Hou, C. (2017), "Creep behaviour of geopolymer concrete", Doctor of Philosophy, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Australia.
  25. Kanagaraj, B., Anand, N., Alengaram, U.J., Praveen, B. and Tattukolla, K. (2022), "Performance evaluation on engineering properties and sustainability analysis of high strength geopolymer concrete", J. Build. Eng., 60, 105147. https://doi.org/10.1016/j.jobe.2022.105147.
  26. Khan, I., Xu, T., Castel, A., Gilbert, R.I. and Babaee, M. (2019), "Risk of early age cracking in geopolymer concrete due to restrained shrinkage", Constr. Build. Mater., 229, 116840. https://doi.org/10.1016/j.conbuildmat.2019.116840.
  27. Kobayashi, K. and Uno, Y. (1990), "Influence of alkali on carbonation of concrete, Part 2-Influence of alkali in cement on rate of carbonation of concrete", Cement Concrete Res., 20, 619-622. https://doi.org/10.1016/0008-8846(90)90104-6.
  28. Komnitsas, K.A. (2011), "Potential of geopolymer technology towards green buildings and sustainable cities", Procedia Eng., 21, 1023-1032. https://doi.org/10.1016/j.proeng.2011.11.2108.
  29. Noushini, A., Castel, A. and Gilbert, R.I. (2018), "Creep and shrinkage of synthetic fibre-reinforced geopolymer concrete", Mag. Concrete Res., 71, 1070-1082. https://doi.org/10.1680/jmacr.18.00053.
  30. Pavithra, P., Reddy, M.S., Dinakar, P., Rao, B.H., Satpathy, B.K. and Mohanty, A.N. (2016), "A mix design procedure for geopolymer concrete with fly ash", J. Clean. Prod., 133, 117-125. https://doi.org/10.1016/j.jclepro.2016.05.041.
  31. Qin, L.S., Li, X., Zhou, J., Liang, Y., Ou, W. and Chen, Z. (2023), "Flexural behavior of reinforced recycled aggregates concrete beam after exposed to high temperatures", Struct. Eng. Mech., 87(3), 201-210. https://doi.org/10.12989/sem.2023.87.3.201.
  32. Ridtirud, C., Chindaprasirt, P. and Pimraksa, K. (2011), "Factors affecting the shrinkage of fly ash geopolymers", Int. J. Miner. Metall. Mater., 18, 100-104. https://doi.org/10.1007/s12613-011-0407-z.
  33. Wallah, S.E. (2010), "Creep behaviour of fly ash-based geopolymer concrete", Civil Eng. Dimens., 12, 73-78. https://doi.org/10.9744/ced.12.2.73-78.
  34. Shariq, M., Prasad, J. and Abbas, H. (2016), "Creep and drying shrinkage of concrete containing GGBFS", Cement Concrete Compos., 68, 35-45. https://doi.org/10.1016/j.cemconcomp.2016.02.004.
  35. Shekhawat, P., Sharma, G. and Singh, R.M. (2019), "Strength behavior of alkaline activated eggshell powder and flyash geopolymer cured at ambient temperature", Constr. Build. Mater., 223, 1112-1122. https://doi.org/10.1016/j.conbuildmat.2019.07.325.
  36. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. and Chindaprasirt, P. (2011), "NaOH-activated ground fly ash geopolymer cured at ambient temperature", Fuel, 90, 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018.
  37. Tayeh, B.A., Hakamy, A., Amin, M., Zeyad, A.M. and Agwa, I.S. (2022), "Effect of air agent on mechanical properties and microstructure of lightweight geopolymer concrete under high temperature", Case Stud. Constr. Mater., 16, e00951. https://doi.org/10.1016/j.cscm.2022.e00951.
  38. Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021), "Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete", Case Stud. Constr. Mater., 15, e00673. https://doi.org/10.1016/j.cscm.2021.e00673.
  39. Temuujin, J., Van Riessen, A. and MacKenzie, K.J.D. (2010), "Preparation and characterisation of fly ash based geopolymer mortars", Constr. Build. Mater., 24, 1906-1910. https://doi.org/10.1016/j.conbuildmat.2010.04.012.
  40. Temuujin, J., van Riessen, A. and Williams, R. (2009), "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes", J. Hazard. Mater., 167, 82-88. https://doi.org/10.1016/j.jhazmat.2008.12.121.
  41. Un, C.H. (2017), "Creep behaviour of geopolymer concrete", Swinburne University of Technology, Melbourne, Australia.
  42. Wallah, S.E. (2009), "Drying shrinkage of heat-cured fly ash-based geopolymer concrete", Mod. Appl. Sci., 3(12), 14-21. https://doi.org/10.5539/mas.v3n12p14
  43. Wallah, S.E. and Rangan, B.V. (2006), "Low-calcium fly ash-based geopolymer concrete: Long-term properties", Research Report GC 2, Curtin University of Technology, Perth, Australia.
  44. Williams, R.P. and Van Riessen, A. (2010), "Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD", Fuel, 89, 3683-3692. https://doi.org/10.1016/j.fuel.2010.07.031.
  45. Xi, Y., Bazant, Z.P., Molina, L. and Jennings, H.M. (1994), "Moisture diffusion in cementitious materials Moisture capacity and diffusivity", Adv. Cement Bas. Mater., 1, 258-266. https://doi.org/10.1016/1065-7355(94)90034-5.
  46. Zhang, Z., Wang, H., Provis, J.L. and Reid, A. (2013), "Efflorescence: A critical challenge for geopolymer applications?", Concrete Institute of Australia's Biennial National Conference 2013, University of Southern Queensland. January.