• Title/Summary/Keyword: time-delay systems

Search Result 1,734, Processing Time 0.036 seconds

Delay-Dependent Control for Time-Delayed T-S Fuzzy Systems Using Descriptor Representation

  • Jeung, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.182-188
    • /
    • 2004
  • This paper presents a design method of delay-dependent control for T-S fuzzy systems with time delays. Based on parallel distributed compensation (PDC) and a descriptor model transformation of the system, a delay-dependent control is utilized. An appropriate Lyapunov-Krasovskii functional is chosen for delay-dependent stability analysis. A sufficient condition for delay-dependent control is represented in terms of linear matrix inequalities (LMIs).

A Study on RFID and Bar-code System Simulations for Delay Time Cost in DC Inspection Process (RFID와 바코드가 적용된 검수작업의 대기비용 비교를 위한 시뮬레이션)

  • Park, Sung-Mee;Kim, Jung-Ja
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.4
    • /
    • pp.111-117
    • /
    • 2007
  • Comparing with bar-code systems, RFID systems can supply more efficient work. Using RFID systems, logistic management systems could be helped effectively to gather real-time information. It's available to reduce the working time and object's delay time, and to deal with real-time information by using RFID system. Until now, based on how many pallets used, there is few study about best workload of RFID system. Therefore, in this study, both bar-code and RFID system simulations were executed for inspection process in distribution center. As a result, following the ware pallet quantity, the total cost of both working time and other delay times were calculated and the sensitivity analysis of total cost trend was executed.

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Delay-dependent Guaranteed Cost Control for Uncertain Time-delay Systems (불확실 시간지연 시스템에 대한 지연량을 고려한 성능보장 제어)

  • 이영삼;문영수;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.13-13
    • /
    • 2000
  • This paper considers delay-dependent guaranteed cost control for uncertain time-delay systems with norm-bounded parametric uncertainties. A new delay-dependent condition for the existence of the guaranteed cost control law is presented in terms of linear matrix inequalities (LMI). An algorithm involving convex optimization is proposed to design a controller which guarantees the suboptimal minimum of the guaranteed cost of the closed-loop system for all admissible uncertainties.

  • PDF

Stability Analysis of Network Systems with Time delay (시간 지연을 포함한 네트워크 시스템의 안정도 분석)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1674-1675
    • /
    • 2007
  • This paper presents a stability analysis of network systems with time delay. Time delay problem frequently occurs in network systems. Since it makes network systems unstable and unpredictable, an optimal controller is necessary to network systems. We prove the asymptotical stability of time delayed network systems using LMI optimization method and appropriate Lyapunov-Krasovskii functionals. Simulations show the effectiveness of the method.

  • PDF

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.

Feedback stabilization of linear systems with delay in state (상태변수에 지연요소를 갖는 시스템의 안정화 방법에 관한 연구)

  • 권욱현;임동진
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 1982
  • This paper suggests easy stabilization methods for linear time-varying systems with delay in the state. While existing methods employ the function space concept, the methods introduced in this paper transform the delay systems into the non-delay systems so that the well known methods for finite dimensional systems can be utilized. Particularly the intervalwise predictor is introduced and shown to satisfy an ordinary system. Control laws stabilizing the non-delay systems satisfied by this predictor will be shown to at least pointwise stabilize the delay systems with the additional strong possibility of true stabilization. In order to combine two steps of the predictor method, first transformation and then stabilization, an intervalwise regulator problem is suggested whose optimal control laws incorporate the intervalwise predictor as an integral part and also at least pointwise stabilize the delay systems. Since the above mentioned methods render the periodic feedback gains for time invariant systems the pointwise predictor and regulator are introduced in order to obtain the constant feedback gains, with additional stability properties. The control laws given in this paper are perhaps simplest and easiest to implement.

  • PDF

Delay-dependent and Parameter-dependent Robust Stability for Discrete-time Delayed Uncertain Singular Systems (이산시간 지연 불확실 특이시스템의 지연 종속 및 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.788-792
    • /
    • 2010
  • The problem of delay-dependent and parameter-dependent robust stability condition for discrete-time uncertain singular systems with polytopic uncertainty and interval time-varying delay is considered. A new robust stability condition based on parameter-dependent Lyapunov function is derived in terms of LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general condition for both singular and non-singular systems. A numerical example is presented to demonstrate the effectiveness of the proposed method.

H Control of Networked Control Systems with Two Additive Time-varying Delays (시변 시간지연을 갖는 네트워크 제어 시스템의 H 제어)

  • Kim, Jae Man;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • This paper presents a stabilization method for NCS (Networked Control Systems) with two additive time-varying delays. Each time delay component between the plant and the controller has different characteristics depending on communication network, and has the upper and lower bounds. The time delay occurring from the controller to the plant has an effect on the time delay occurring from the plant to the controller, and the relationship between two delays is taken into account on the stability analysis. Based on the two additive delay components and the bound conditions, the appropriate Lyapunov-Krasovskii functional and the LMI (Linear Matrix Inequality) method derive the stability condition and the $H_{\infty}$ norm constraint for time-varying delayed NCS. Simulation results are finally given to demonstrate the effectiveness of the proposed method.

Delay-dependent Robust $H_{\infty}$ Control for Uncertain Discrete-time Descriptor Systems with Interval Time-varying Delays in State and Control Input (상태와 입력에 구간 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연 종속 강인 $H_{\infty}$ 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.193-198
    • /
    • 2009
  • In this paper, we consider the design problem of delay-dependent robust $H{\infty}$ controller of discrete-time descriptor systems with parameter uncertainties and interval time-varying delays in state and control input by delay-dependent LMI (linear matrix inequality) technique. A new delay-dependent bounded real lemma for discrete-time descriptor systems with time-varying delays is derived. The condition for the existence of robust $H{\infty}$ controller and the robust $H{\infty}$ state feedback control law are proposed by LMI approach. A numerical example is demonstrated to show the validity of the design method.