• Title/Summary/Keyword: time domain decomposition

Search Result 147, Processing Time 0.026 seconds

Characteristic of $LiNbO_3$ Domain Inversion and Fabrication of Electrooptic Device Application using Domain Reversal ($LiNbO_3$ 기판의 도메인 반전 특성과 이를 이용한 기능성 광변조기의 제작)

  • Jeong, W.J.;Kim, W.K.;Yang, W.S.;Lee, H.M.;Kwon, S.W.;Song, M.K.;Lee, H.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.20-25
    • /
    • 2007
  • The periodic domain-inversion in the selective areas of $Ti:LiNbO_3$ Mach-Zender waveguides was performed and band-pass modulators and single sideband (SSB) modulators were fabricated by using domain-reversal. The domain wall velocity was precisely controlled by real-time analysis of a poling-induced response current under an applied voltage. The domain wall velocity was significantly affected by the crystal orientation of the domain wall propagation which influenced the final domain geometry. In a certain case, the decomposition of $LiNbO_3$ crystal was observed, for example, under the condition of too fast domain wall propagation. The fabricated band-pass modulator with a periodic domain-inversion structure showed the maximum modulation efficiency at 30.3 GHz with 5.1 GHz 3dB-bandwidth, and SSB modulator was measured to show 33 dB USB suppression over LSB at 5.8 GHz RF.

Optimal Control of Large-Scale Dynamic Systems using Parallel Processing (병렬처리를 이용한 대규모 동적 시스템의 최적제어)

  • Park, Ki-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.403-410
    • /
    • 1999
  • In this study, a parallel algorithm has been developed that can quickly solve the optiaml control problem of large-scale dynamic systems. The algorithm adopts the sequential quadratic programming methods and achieves domain decomposition-type parallelism in computing sensitivities for search direction computation. A silicon wafer thermal process problem has been solved using the algorithm, and a parallel efficiency of 45% has been achieved with 16 processors. Practical methods have also been investigated in this study as a way to further speed up the computation time.

  • PDF

A note for hybrid Bollinger bands

  • Rhee, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.4
    • /
    • pp.777-782
    • /
    • 2010
  • We introduce some techniques to decompose the impulse (the unit sample) into several dilated pieces in the discrete time domain. From the decomposition of the impulse, we obtain localized moving averages. Thus we construct hybrid Bollinger bands that may give various strategies for stock traders. By simulations, we report that more than 94% of stock prices of companies in KOSPI 200 are inside this hybrid Bollinger band.

Parallelization of 3-dimensional Multigrid DADI Method (3차원 다중격자 DADI 방법의 병렬처리)

  • Seong Chun-Ho;Park Su-Hyeong;Gwon Jang-Hyeok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.49-54
    • /
    • 1998
  • 3-dimensional Euler solver is parallelized. The spatial discretization method is the 2nd order TVD scheme and DADI method with multigrid is used as a time integration. In order to parallelize this solver, the domain decomposition method with overlapped grid and message passing techniques are used. The informations on the each inter-processor bound-aries are communicated with MPI library. Finally, the parallel performance repsented by calculating the ONERA M6 wing at transonic flow condition using CRAY T3E and C90.

  • PDF

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

Neighborhood Reduction in Local Search based on Geospatial Relation for Multi Depot Vehicle Routing Problems

  • Tamashiro, Hiroshi;Nakamura, Morikazu;Tamaki, Shiro;Onaga, Kenji
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.595-598
    • /
    • 2002
  • This paper proposes neighborhood reduction techniques in local search of the customer decomposition subproblem in the Multi Depots Vehicle Routing Problem with Time Windows (MDVRPTW) by using geospatial relation among depots and customers. The neighborhood of the customer decomposition subproblem can be simply and well defined but it should include excessively bad solution candidates. Our techniques find such candidates by using information of the problem domain, geographical relation. We use our techniques in Tabu Search and evaluate the effectiveness in computer experiment.

  • PDF

Dynamic Instability and Instantaneous Frequency of a Shallow Arch With Asymmetric Initial Conditions (비대칭 초기 조건을 갖는 얕은 아치의 동적 불안정과 순시 주파수 변화)

  • Shon, Sudeok;Ha, Junhong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2020
  • This paper examined the dynamic instability of a shallow arch according to the response characteristics when nearing critical loads. The frequency changing feathers of the time-domain increasing the loads are analyzed using Fast Fourier Transformation (FFT), while the response signal around the critical loads are analyzed using Hilbert-Huang Transformation (HHT). This study reveals that the models with an arch shape of h = 3 or higher exhibit buckling, which is very sensitive to the asymmetric initial conditions. Also, the critical buckling load increases as the shape increases, with its feather varying depending on the asymmetric initial conditions. Decomposition results show the decrease in predominant frequency before the threshold as the load increases, and the predominant period doubles at the critical level. In the vicinity of the critical level, sections rapidly manifest the displacement increase, with the changes in Instantaneous Frequency (IF) and Instant Energy (IE) becoming apparent.

Large Solvent and Noise Peak Suppression by Combined SVD-Harr Wavelet Transform

  • Kim, Dae-Sung;Kim, Dai-Gyoung;Lee, Yong-Woo;Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.971-974
    • /
    • 2003
  • By utilizing singular value decomposition (SVD) and shift averaged Harr wavelet transform (WT) with a set of Daubechies wavelet coefficients (1/2, -1/2), a method that can simultaneously eliminate an unwanted large solvent peak and noise peaks from NMR data has been developed. Noise elimination was accomplished by shift-averaging the time domain NMR data after a large solvent peak was suppressed by SVD. The algorithms took advantage of the WT, giving excellent results for the noise elimination in the Gaussian type NMR spectral lines of NMR data pretreated with SVD, providing superb results in the adjustment of phase and magnitude of the spectrum. SVD and shift averaged Haar wavelet methods were quantitatively evaluated in terms of threshold values and signal to noise (S/N) ratio values.

Applications of the improved Hilbert-Huang transform method to the detection of thermo-acoustic instabilities (열음향학적 불안정성 검출에 대한 개선된 힐버트-후앙 변환의 적용)

  • Cha, Ji-Hyeong;Kim, Young-Seok;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.555-561
    • /
    • 2012
  • The Hilbert Huang Transform (HHT) technigue with Empirical Mode Decomposition (EMD) is one of the time-frequency domain analysis methods and it has several advantages such that analyzing non-stationary and nonlinear signal is possible. However, there are shortcomings in detecting near-range of frequencies and added noise signals. In this paper, to analyze characteristics of each method, HHT and Short-Time Fourier Transform (STFT) effective in dealing with stationary signals are compared. And with thermoacoustic instabilities signals from a Rijke tube test, HHT and the improved HHT with Ensemble Empirical Mode Decomposition (EEMD) are compared. The results show that the improved HHT is more appropriate than the original HHT due to the relative insensitivity to noise. Therefore it will result in more accurate analysis.

  • PDF

Estimation of Brain Connectivity during Motor Imagery Tasks using Noise-Assisted Multivariate Empirical Mode Decomposition

  • Lee, Ki-Baek;Kim, Ko Keun;Song, Jaeseung;Ryu, Jiwoo;Kim, Youngjoo;Park, Cheolsoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1812-1824
    • /
    • 2016
  • The neural dynamics underlying the causal network during motor planning or imagery in the human brain are not well understood. The lack of signal processing tools suitable for the analysis of nonlinear and nonstationary electroencephalographic (EEG) hinders such analyses. In this study, noise-assisted multivariate empirical mode decomposition (NA-MEMD) is used to estimate the causal inference in the frequency domain, i.e., partial directed coherence (PDC). Natural and intrinsic oscillations corresponding to the motor imagery tasks can be extracted due to the data-driven approach of NA-MEMD, which does not employ predefined basis functions. Simulations based on synthetic data with a time delay between two signals demonstrated that NA-MEMD was the optimal method for estimating the delay between two signals. Furthermore, classification analysis of the motor imagery responses of 29 subjects revealed that NA-MEMD is a prerequisite process for estimating the causal network across multichannel EEG data during mental tasks.