Browse > Article
http://dx.doi.org/10.9712/KASS.2020.20.2.77

Dynamic Instability and Instantaneous Frequency of a Shallow Arch With Asymmetric Initial Conditions  

Shon, Sudeok (Dept. of Architectural Eng., Koreatech University)
Ha, Junhong (School of Liberal Arts, Koreatech University)
Publication Information
Journal of Korean Association for Spatial Structures / v.20, no.2, 2020 , pp. 77-85 More about this Journal
Abstract
This paper examined the dynamic instability of a shallow arch according to the response characteristics when nearing critical loads. The frequency changing feathers of the time-domain increasing the loads are analyzed using Fast Fourier Transformation (FFT), while the response signal around the critical loads are analyzed using Hilbert-Huang Transformation (HHT). This study reveals that the models with an arch shape of h = 3 or higher exhibit buckling, which is very sensitive to the asymmetric initial conditions. Also, the critical buckling load increases as the shape increases, with its feather varying depending on the asymmetric initial conditions. Decomposition results show the decrease in predominant frequency before the threshold as the load increases, and the predominant period doubles at the critical level. In the vicinity of the critical level, sections rapidly manifest the displacement increase, with the changes in Instantaneous Frequency (IF) and Instant Energy (IE) becoming apparent.
Keywords
Shallow arches; Dynamic instability; Asymmetric mode; Initial condition; Imperfection; Empirical mode decomposition; Instantaneous frequency;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Hoff, N. J., & Bruce, V. G., "Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches", Journal of Mathematics and Physics, Vol.32, No.1-4, pp.276-288, 1953, doi: 10.1002/sapm1953321276   DOI
2 Riff, R., & Simitses, G. J. (1987). The dynamic aspects of thermo-elasto-viscoplastic snapthrough and creep buckling phenomena (Report No. NAS 1.26:181411). USA: National Aeronautics and Space Administration, Lewis Research Center.
3 Budiansky, B., & Roth, R., "Axisymmetric Dynamic Buckling of Clamped Shallow Spherical Shells", NASA TN D-1510, pp.597-606, 1962
4 Humphreys, J. S., "On Dynamic Snap Buckling of Shallow Arches", AIAA Journal, Vol.4, No.5, pp.878-886, 1966, doi: 10.2514/3.3561   DOI
5 Levitas, J., Singer, J., & Weller, T., "Global dynamic stability of a shallow arch by poincaré-like simple cell mapping", International Journal of Non-Linear Mechanics, Vol.32, No.2, pp.411-424, 1997, doi: 10.1016/S0020-7462(96)00046-7   DOI
6 Bi, Q., & Dai, H. H., "Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance", Journal of Sound and Vibration, Vol.233, No.4, pp.553-567, 2000, doi: 10.1006/jsvi.1999.2813   DOI
7 Ha, J., Gutman, S., Shon, S., & Lee, S., "Stability of shallow arches under constant load", International Journal of Non-Linear Mechanics, Vol.58, pp.120-127, 2014, doi: 10.1016/j.ijnonlinmec.2013.08.004   DOI
8 Pokhrel, B. P., Shon, S., Ha, J., & Lee, S., "Dynamic Stability and Semi-Analytical Taylor Solution of Arch With Symmetric Mode", Journal of Korean Association for Spatial Structures, Vol.18, No.3, pp.83-91, 2018, doi: 10.9712/KASS.2018.18.3.83   DOI
9 Virgin, L. N., Wiebe, R., Spottswood, S. M., & Eason, T. G., "Sensitivity in the structural behavior of shallow arches", International Journal of Non-Linear Mechanics, Vol.58, pp.212-221, 2014, doi: 10.1016/j.ijnonlinmec.2013.10.003   DOI
10 Shon, S., Ahn, S., Lee, S., & Ha, J., "A Semianalytical Approach for Nonlinear Dynamic System of Shallow Arches Using Higher Order Multistep Taylor Method", Mathematical Problems in Engineering, Vol.2018, No.4., pp.1-17, 2018, doi: 10.1155/2018/9567619   DOI
11 Shon, S., Ha, J., Lee, S., & Kim, J. J., "Application of Multistage Homotopy Perturbation Method to the Nonlinear Space Truss Model", International Journal of Steel Structures, Vol.15, No.2, pp.335-346, 2015, doi: 10.1007/s13296-015-6006-5   DOI
12 Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, Vol.454, No.1971, pp.903-995, doi: 10.1098/rspa.1998.0193
13 Huang, N. E., & Wu, Z., "A review on Hilbert-Huang transform: Method and its applications to geophysical studies", Reviews of Geophysics, Vol.46, No.2, pp.1-23, 2008, doi: 10.1029/2007RG000228
14 Nunes, J. C., & DELECHELLE, E., "Empirical Mode Decomposition: Applications on Signal And Image Processing", Advances in Adaptive Data Analysis, Vol.01, No.01, pp.125-175, 2009, doi: 10.1142/S1793536909000059   DOI
15 Shon, S., Ha, J., Pokhrel, B. P., & Lee, S., "Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method", Journal of Korean Association for Spatial Structures, Vol.19, No.2, pp.101-108, 2019, doi: 10.9712/KASS.2019.19.2.101