• Title/Summary/Keyword: threshold voltage model

Search Result 163, Processing Time 0.024 seconds

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

Design of Ultra Low-Voltage NCL Circuits in Nanoscale MOSFET Technology (나노 MOSFET 공정에서의 초저전압 NCL 회로 설계)

  • Hong, Woo-Hun;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.17-23
    • /
    • 2012
  • Ultra low-power design and energy harvesting applications require digital systems to operate under extremely low voltages approaching the point of balance between dynamic and static power consumption which is attained in the sub-threshold operation mode. Delay variations are extremely large in this mode. Therefore, in this paper, a new low-power logic design methodology using asynchronous NCL circuits is proposed to reduce power consumption and not to be affected by various technology variations in nanoscale MOSFET technology. The proposed NCL is evaluated using various benchmark circuits at 0.4V supply voltage, which are designed using 45nm MOSFET predictive technology model. The simulation results are compared to those of conventional synchrouns logic circuits in terms of power consumption and speed.

Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography

  • Kim, Ju Young;Kim, Jin Hyeon;Lee, Hee Jin;Kim, Sang Hoon;Jung, Young Jin;Lee, Hee-Young;Kim, Hee Jaung;Kim, Sae Yoon
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.2
    • /
    • pp.192-198
    • /
    • 2018
  • Background: Chronic inflammation can lower the seizure threshold and have influence on epileptogenesis. The components of red ginseng (RG) have anti-inflammatory effects. The abundance of peripherally derived immune cells in resected epileptic tissue suggests that the immune system is a potential target for anti-epileptogenic therapies. The present study used continuous electroencephalography (EEG) to evaluate the therapeutic efficacy of RG in intrahippocampal kainic acid (IHKA) animal model of temporal lobe epilepsy. Methods: Prolonged status epilepticus (SE) was induced in 7-week-old C57BL/6J mice via stereotaxic injection of kainic acid (KA, 150 nL; 1 mg/mL) into the right CA3/dorsal hippocampus. The animals were implanted electrodes and monitored for spontaneous seizures. Following the IHKA injections, one group received treatments of RG (250 mg/kg/day) for 4 weeks (RG group, n=7) while another group received valproic acid (VPA, 30 mg/kg/day) (VPA group, n=7). Laboratory findings and pathological results were assessed at D29 and continuous (24 h/week) EEG monitoring was used to evaluate high-voltage sharp waves on D7, D14, D21, and D28. Results: At D29, there were no differences between the groups in liver function test but RG group had higher blood urea nitrogen levels. Immunohistochemistry analyses revealed that RG reduced the infiltration of immune cells into the brain and EEG analyses showed that it had anticonvulsant effects. Conclusion: Repeated treatments with RG after IHKA-induced SE decreased immune cell infiltration into the brain and resulted in a marked decrease in electrographic seizures. RG had anticonvulsant effects that were similar to those of VPA without serious side effects.

3차원 포아송방정식을 이용한 FinFET의 해석학적 포텐셜모델

  • Han, Ji-Hyung;Jung, Hak-Kee;Jung, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.579-582
    • /
    • 2008
  • Three dimensional(3D) Poisson's equation is used to calculate the potential variation in the channel to analyze subthreshold current and short channel effect(SCE). The analytical model has been presented to lessen calculating time and understand the relationship of parameters. The accuracy of this model has been verified by the data from 3D numerical device simulator and variation for dimension and process parameters has been explained. The model has been developed to obtain channel potential of FinFET according to channel doping and to calculate subthreshold current and threshold voltage.

  • PDF

Subthreshold Characteristics of Double Gate MOSFET for Gaussian Function Distribution (도핑분포함수의 형태에 따른 DGMOSFET의 문턱전압이하특성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1260-1265
    • /
    • 2012
  • This paper have presented the change for subthreshold characteristics for double gate(DG) MOSFET based on scaling theory and the shape of Gaussian function. To obtain the analytical solution of Poisson's equation, Gaussian function been used as carrier distribution and consequently potential distributions have been analyzed closely for experimental results, and the subthreshold characteristics have been analyzed for the shape parameters of Gaussian function such as projected range and standard projected deviation. Since this potential model has been verified in the previous papers, we have used this model to analyze the subthreshold chatacteristics. The scaling theory is to sustain constant outputs for the change of device parameters. As a result to apply the scaling theory for DGMOSFET, we know the subthreshold characteristics have been greatly changed, and the change of threshold voltage is bigger relatively.

SIMULATION OF SHIELDING EFFECTS ON THE TOTAL DOSE OBSERVED IN TDE OF KITSAT-1 (KITSAT-1 TDE의 차폐 효과에 의한 총 축적 방사능양 변화에 대한 연구)

  • 김성준;신영훈;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2001
  • The threshold voltage shift observed in TDE (Total Dose Experiment) on board the KITAT-1 is converted into dose (rad($SiO_2$)) using the result of laboratory calibration with Co-60 gamma ray source in KAERI (Korea Atomic Energy Research Institute). Simulation using the NASA radiation model of geomagnetosphere verifies that the dose difference between RADFET1 and RADFET3 observed on KITSAT-1 comes from the difference in shielding thickness at the position of these RADFETs.

  • PDF

Degradation Behavior of 850 nm AlGaAs/GaAs Oxide VCSELs Suffered from Electrostatic Discharge

  • Kim, Tae-Yong;Kim, Tae-Ki;Kim, Sang-In;Kim, Sang-Bae
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.833-843
    • /
    • 2008
  • The effect of forward and reverse electrostatic discharge (ESD) on the electro-optical characteristics of oxide vertical-cavity surface-emitting lasers is investigated using a human body model for the purpose of understanding degradation behavior. Forward ESD-induced degradation is complicated, showing three degradation phases depending on ESD voltage, while reverse ESD-induced degradation is relatively simple, exhibiting two phases of degradation divided by a sudden distinctive change in electro-optical characteristics. We demonstrate that the increase in the threshold current is mainly due to the increase in leakage current, nonradiative recombination current, and optical loss. The decrease in the slope efficiency is mainly due to the increase in optical loss.

  • PDF

Current Modeling for Accumulation Mode GaN Schottky Barrier MOSFET for Integrated UV Sensors

  • Park, Won-June;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.79-84
    • /
    • 2017
  • The drain current of the SB MOSFET was analytically modeled by an equation composed of thermionic emission and tunneling with consideration of the image force lowering. The depletion region electron concentration was used to model the channel electron concentration for the tunneling current. The Schottky barrier width is dependent on the channel electron concentration. The drain current is changed by the gate oxide thickness and Schottky barrier height, but it is hardly changed by the doping concentration. For a GaN SB MOSFET with ITO source and drain electrodes, the calculated threshold voltage was 3.5 V which was similar to the measured value of 3.75 V and the calculated drain current was 1.2 times higher than the measured.

A Study on the Degradation Mechanism due to FN Tunneling Carrier in MOS Device (MOS 소자의 FN 터널링 캐리어에 의한 성능 저하에 관한 연구)

  • 김명섭;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.2
    • /
    • pp.53-63
    • /
    • 1993
  • Device degradations by the Fowler-Nordheim tunneling have been studide. The changes of device characteristics such as the threshold voltage, subthreshold slope, I-.or. curves have been measured after bidirectionally stressing n-channel MOSFET's and p-channel MOSFET's. Also the interface states have been directly measured by the charge pumping methodIt is shown that the change of interface states is determined by the number of hole carriers tunneling the gate oxide and electrons which are trapped in the gate oxide. Also, in this paper, we propose a model for device lifetime limited by the increase of interface states.

  • PDF

Circuit-Level Reliability Simulation and Its Applications (회로 레벨의 신뢰성 시뮬레이션 및 그 응용)

  • 천병식;최창훈;김경호
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.93-102
    • /
    • 1994
  • This paper, presents SECRET(SEC REliability Tool), which predicts reliability problems related to the hot-carrier and electromigration effects on the submicron MOSFETs and interconnections. To simulate DC and AC lifetime for hot-carrier damaged devices, we have developed an accurate substrate current model with the geometric sensitivity, which has been verified over the wide ranges of transistor geometries. A guideline can be provided to design hot-carrier resistant circuits by the analysis of HOREL(HOT-carrier RFsistant Logic) effect, and circuit degradation with respect to physical parameter degradation such as the threshold voltage and the mobility can also be expected. In SECRET, DC and AC MTTF values of metal lines are calculated based on lossy transmission line analysis, and parasitic resistances, inductances and capacitances of metal lines are accurately considered when they operate in the condition of high speed. Also, circuit-level reliability simulation can be applied to the determination of metal line width and-that of optimal capacitor size in substrate bias generation circuit. Experimental results obtained from the several real circuits show that SECERT is very useful to estimate and analyze reliability problems.

  • PDF