• Title/Summary/Keyword: three-dimensional integration

Search Result 282, Processing Time 0.032 seconds

Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme

  • Shi, Jingyu;Shen, Baotang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.309-317
    • /
    • 2018
  • We employ a three-dimensional indirect boundary element method (BEM) to simulate temperature change around an underground liquefied natural gas storage cavern. The indirect BEM (IBEM) uses fictitious heat source strength on boundary elements as basic variables which are solved from equations of boundary conditions and then used to compute the temperature change at other points in the considered problem domain. The IBEM requires evaluation of singular integration for temperature change due to heat conduction from a constant heat source on a planar (triangular) region. The singularity can be eliminated by a semi-analytical integration scheme. However, it is found that the semi-analytical integration scheme yields sharp temperature gradient for points close to vertices of triangle. This affects the accuracy of heat flux, if they are evaluated by finite difference method at these points. This difficulty can be overcome by a combination of using a direct numerical integration for these points and the semi-analytical scheme for other points distance away from the vertices. The IBEM and the hybrid integration scheme have been verified with an analytic solution and then used to the application of the underground storage.

Analysis of Unsteady and Asymmetric Flows Using Digital Speckle Tomography with Developed Integration Method (개발된 적분법을 포함하는 디지털 스펙클 토모그래피 기법을 이용한 비정상 비대칭 유동 분석)

  • Baek, Seung-Hwan;Kim, Yong-Jae;Ko, Han-Seo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.517-518
    • /
    • 2006
  • Transient and asymmetric density distributions have been investigated by three-dimensional digital speckle tomography with a novel integration method. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and unsteady. The speckle movements which have been formed by a ground glass between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be transferred to deflection angles of laser rays for density gradients. A novel integration method has been developed to obtain projection data from the deflection angles for the speckle tomography.'The three-dimensional density fields have been reconstructed from the accurate projection values by a real-time multiplicative algebraic reconstruction technique (MART) with the developed integration method.

  • PDF

Unrestricted Measurement Method of Three-dimensional Walking Distance Utilizing Body Acceleration and Terrestrial Magnetism

  • Inooka, Hikaru;Kim, HiSik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.94.5-94
    • /
    • 2001
  • Unrestricted measurement method of three-dimensional walking distance utilizing body acceleration and terrestrial magnetism is discussed. The three-dimensional walking distance is derived by the integration of the three dimensional acceleration of foot during swing phase. Since the sensor system attached on the foot rotates during swing phase, the acceleration data measured on the foot include acceleration of gravity which causes inaccurate calculation of the velocity and the distance. Three gyros are used to compensate the rotation of the sensor system. Moreover, one geomagnetic sensor is employed to derive the heading direction of the subject Healthy volunteers performed ...

  • PDF

Wafer-Level Three-Dimensional Monolithic Integration for Intelligent Wireless Terminals

  • Gutmann, R.J.;Zeng, A.Y.;Devarajan, S.;Lu, J.Q.;Rose, K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.196-203
    • /
    • 2004
  • A three-dimensional (3D) IC technology platform is presented for high-performance, low-cost heterogeneous integration of silicon ICs. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. Daisy-chain inter-wafer via test structures and compatibility of the process steps with 130 nm CMOS sal devices and circuits indicate the viability of the process flow. Such 3D integration with through-die vias enables high functionality in intelligent wireless terminals, as vertical integration of processor, large memory, image sensors and RF/microwave transceivers can be achieved with silicon-based ICs (Si CMOS and/or SiGe BiCMOS). Two examples of such capability are highlighted: memory-intensive Si CMOS digital processors with large L2 caches and SiGe BiCMOS pipelined A/D converters. A comparison of wafer-level 3D integration 'lith system-on-a-chip (SoC) and system-in-a-package (SiP) implementations is presented.

Characteristics of 3-Dimensional Integration Circuit Device (3차원 집적 회로 소자 특성)

  • Park, Yong-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2013
  • As a demand for the portable device requiring smaller size and better performance is in hike, reducing the size of conventionally used planar 2 dimensional integration circuit(IC) cannot be a solution for the enhancement of the semiconductor integration circuit technology due to an increase in RC delay among interconnects. To address this problem, a new technology of 3 dimensional integration circuit (3D-IC) has been developing. In this study, three-dimensional integrated device was investigated due to improve of reducing the size, interconnection problem, high system performance and functionality.

Development of three dimensional variable-node elements and their applications to multiscale problems (삼차원 다절점 유한요소의 개발과 멀티스케일 문제의 적용)

  • Lim, Jae-Hyuk;Sohn, Dong-Woo;Im, Se-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.172-176
    • /
    • 2008
  • In this paper, three dimensional linear conforming variable-finite elements are presented with the aid of a smoothed integration (a class of stabilized conforming nodal integration), for mnltiscale mechanics problems. These elements meet the desirable properties of an interpolation such as the Kronecker delta condition, the partition of unity condition and the positiveness of interpolation function. The necessary condition of linear exactness is fully relaxed by employing the smoothed integration, which renders us to meet the linear exactness in a straightforward manner. This novel element description extend the category of the conventional finite elements space to ration type function space and give the flexibility on the number of nodes of element which are fixed in the conventional finite elements. Several examples are provided to show the convergence and the accuracy of the proposed elements, and to demonstrate their potential with emphasis on the multiscale mechanics problems such as global/local analysis, nonmatching contact problems, and modeling of composite material with defects.

  • PDF

A Study on Architectural Expressive Characteristic of 'Structure & Skin Integration' Type in Contemporary Architecture - Focused on the Architecture cases after 2000 - (현대건축에서 구조와 표피 일체화 유형의 건축적 표현특성 - 2000년 이후 건축 사례를 중심으로 -)

  • Lee, Sang-Ho;Ban, Ja-Yuen
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.43-50
    • /
    • 2016
  • This study tries to categorize trends of "structure and skin integration" and understand the expressive characters of each architectural type. To do so, we listed up 8 architects who are quoted twice or more in related researches, then analyzed their 25 contemporary buildings which integrated structure and skin since 2000. As a result, this study defined four types based on the way of building tectonic system of structure and skin. Key feature of "linear structure-two dimensional skin" type is the communication with the surroundings as a result of .geometric architectural forms, patterned surface and reflection. Characters of "linear-three dimensional" type are organic architectural forms, sculptural skin, and the mysterious space. "Planar-two dimensional" type is a transformational geometry form to express the dramatic images through the skin, therefore gives a sense of rhythm and dynamics to space. "Planar structure-three dimensional" type highlights the texture, and exposes boundary of the inside and outside. In architectures we studied, the structure is the way to make a creative forms and space, and the skin to express various meanings. That said, the "structure and skin integration" is the means of aggressive design expression.

MULTIDIMENSIONAL INTEGRATION VIA TRAPEZOIDAL AND THREE POINT GENERATORS

  • Cerone, P.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.251-272
    • /
    • 2003
  • Multidimensional integrals are expressed in terms of lower dimensional integrals and function evaluations. An iterative process is used where a trapezoidal and three point identities are used as generators for higher dimensional identities. Bounds are obtained utilising the resulting identities. It is demonstrated that earlier Ostrowski type results are obtained as particular instances of the current work.

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method (몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구)

  • YI, Chaeyeon;AN, Seung-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.16-41
    • /
    • 2020
  • Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

A discretization method of the three-dimensional poisson's equation with excellent convergence characteristics (우수한 수렴특성을 갖는 3차원 포아송 방정식의 이산화 방법)

  • 김태한;이은구;김철성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.15-25
    • /
    • 1997
  • The integration method of carier concentrations to redcue the discretization error of th box integratio method used in the discretization of the three-dimensional poisson's equation is presented. The carrier concentration is approximated in the closed form as an exponential function of the linearly varying potential in the element. The presented method is implemented in the three-dimensional poisson's equation solver running under the windows 95. The accuracy and the convergence chaacteristics of the three-dimensional poisson's equation solver are compared with those of DAVINCI for the PN junction diode and the n-MOSFET under the thermal equilibrium and the DC reverse bias. The potential distributions of the simulatied devices from the three-dimensional poisson's equation solver, compared with those of DAVINCI, has a relative error within 2.8%. The average number of iterations needed to obtain the solution of the PN junction diode and the n-MOSFET using the presented method are 11.47 and 11.16 while the those of DAVINCI are 21.73 and 23.0 respectively.

  • PDF