DOI QR코드

DOI QR Code

MULTIDIMENSIONAL INTEGRATION VIA TRAPEZOIDAL AND THREE POINT GENERATORS

  • Cerone, P. (School of Computer Science and Mathematics Victoria University of Technology)
  • Published : 2003.03.01

Abstract

Multidimensional integrals are expressed in terms of lower dimensional integrals and function evaluations. An iterative process is used where a trapezoidal and three point identities are used as generators for higher dimensional identities. Bounds are obtained utilising the resulting identities. It is demonstrated that earlier Ostrowski type results are obtained as particular instances of the current work.

Keywords

References

  1. Proc. Amer. Math. Soc. v.123 no.12 Ostrowski type inequalities G. A. Anastassiou https://doi.org/10.2307/2161906
  2. Period. Math. Hungar. v.19 no.2 Gruss’ inequality for positive linear functionals D. Andrica;C. Badea https://doi.org/10.1007/BF01848061
  3. RGMIA Research Report Collection v.3 no.4 A trapezoid type inequality for double integrals N. S. Barnett;S. S. Dragomir
  4. Soochow J. Math. v.27 no.1 An Ostrowski type inequality for double integrals and applications for cubature formulae N. S. Barnett;S. S. Dragomir
  5. RGMIA Research Report Collection v.4 no.3 Approximate multidimensional integration through dimension reduction via the Ostrowski functional P. Cerone
  6. RGMIA Res. Rep. Coll. v.4 no.2 On relationships between Ostrowski, trapezoidal and Chebychev identities and inequalities P. Cerone
  7. J. Compt. Anal. Appl. On some inequalities arising from Montgomery’s identity P. Cerone;S. S. Dragomir
  8. RGMIA Res. Rep. Coll. v.2 no.4 Three point quadrature rules involving, at most, a first derivative P. Cerone;S. S. Dragomir
  9. Handbook of Analytic-Computational Methods in Applied Mathematics P. Cerone;S. S. Dragomir;G.A. Anastassiou(Ed)
  10. Turkish J. Math. v.24 no.2 A generalised trapezoid inequality for functions of bounded variation P. Cerone;S. S. Dragomir;C. E. M. Pearce
  11. Demonstratio Math. v.32 no.4 Some Ostrowski type inequalities for n-time differentiable mappings and applications P. Cerone;S. S. Dragomir;J. Roumeliotis
  12. Demonstratio Math. v.33 no.4 A new generalisation of the trapezoidal formula for n-time differentiable mappings and applications P. Cerone;S. S. Dragomir;J. Roumeliotis;J. Sunde
  13. Anal. Num. Theor. Approx. (Romania) An Ostrowski type inequality for double integrals in terms of Lp-norms and applications in numerical integration S. S. Dragomir;N. S. Barnett;P. Cerone
  14. Tamsui Oxf. J. Math. Sci. v.16 no.1 An inequality of the Ostrowski type for double integrals and applications to cubature formulae S. S. Dragomir;P. Cerone;N. S. Barnett;J. Roumeliotis
  15. Ostrowski type inequalities and applications in numerical integration S. S. Dragomir(Ed.);T. M. Rassias(Ed.)
  16. Czechoslovak Math. J. v.42 no.117 Bounds on the derivation of a function from its averages A. M. Fink
  17. ANZIAM v.42 no.E An Ostrowski type inequality in two dimensions using the three point rule G. Hanna;P. Cerone;J. Roumeliotis
  18. RGMIA Res. Rep. Coll. v.3 no.2 A general Ostrowski type inequality for double integrals G. Hanna;S. S. Dragomir;P. Cerone
  19. Univ. Beograd. Publ. Elek. Fak., Ser. Mat. Fiz. no.498-541 On some integral inequalities G. V. Milovanic
  20. Classical and New Inequalities in Analysis D. S. Mitrinovic;J. E. Pecaric;A. M. Fink
  21. Comment. Math. Helv. v.10 Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert A. Ostrowski https://doi.org/10.1007/BF01214290
  22. Tamkang J. Math. v.32 no.1 On a new Ostrowski type inequality in two independent variables B. G. Pachpatte
  23. J. Math. Anal. Appl. v.249 On an inequality of Ostrowski type in three independent variables B. G. Pachpatte https://doi.org/10.1006/jmaa.2000.6913