• Title/Summary/Keyword: thin $Al_2O_3$ layer

Search Result 336, Processing Time 0.026 seconds

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

Low-temperature Epitaxial Growth of a Uniform Polycrystalline Si Film with Large Grains on SiO2 Substrate by Al-assisted Crystal Growth

  • Ahn, Kyung Min;Kang, Seung Mo;Moon, Seon Hong;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Epitaxial growth of a high-quality thin Si film is essential for the application to low-cost thin-film Si solar cells. A polycrystalline Si film was grown on a $SiO_2$ substrate at $450^{\circ}C$ by a Al-assisted crystal growth process. For the purpose, a thin Al layer was deposited on the $SiO_2$ substrate for Al-assisted crystal growth. However, the epitaxial growth of Si film resulted in a rough surface with humps. Then, we introduced a thin amorphous Si seed layer on the Al film to minimize the initial roughness of Si film. With the help of the Si seed layer, the surface of the epitaxial Si film was smooth and the crystallinity of the Si film was much improved. The grain size of the $1.5-{\mu}m$-thick Si film was as large as 1 mm. The Al content in the Si film was 3.7% and the hole concentration was estimated to be $3{\times}10^{17}/cm^3$, which was one order of magnitude higher than desirable value for Si base layer. The results suggest that Al-doped Si layer could be use as a seed layer for additional epitaxial growth of intrinsic or boron-doped Si layer because the Al-doped Si layer has large grains.

Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition (원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구)

  • Hong, Hee Kyeung;Heo, Jaeyeong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.111-115
    • /
    • 2015
  • To improve the efficiency of the Si solar cell, high minority carrier life time is required. Therefore, the passivation technology is important to eliminate point defects on the silicon surface, causing the loss of minority carrier recombination. PECVD or post-annealing of thermally-grown $SiO_2$ is commonly used to form the passivation layer, but a high-temperature process and low thermal stability is a critical factor of low minority carrier lifetime. In this study, atomic layer deposition was used to grow the $Al_2O_3$ passivation layer at low temperature process. $Al_2O_3$ was selected as a passivation layer which has a low surface recombination velocity because of the fixed charge density. For the high charge density, an improved minority carrier lifetime, and a low surface recombination, nitrogen was doped in the $Al_2O_3$ thin film and the improvement of passivation was studied.

Light Enhancement Al2O3 Passivation in InGaN/GaN based Blue Light-emitting Diode Lamps

  • So Soon-Jin;Kim Kyeong-Min;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.775-779
    • /
    • 2006
  • In this study, sputtered $Al_2O_3$ thin films were evaluated as a passivation layer in the process of InGaN-based blue LEDs in order to improve the brightness of LED lamps. In terms of packaged LED lamps, lamps with $Al_2O_3$ passivation layer emanated higher brightness than those with $SiO_2$ passivation layer, and LED lamps with 90 nm $Al_2O_3$ passivation layer were the brightest among four kinds of lamps. Although lamps with $Al_2O_3$ passivation had a slight increase in operating voltage, their brightness was improved about 13.6 % compare to the lamps made of conventional LEDs without the changes of emitting wavelength.

Growth and Characteristics of Al2O3/AlCrNO/Al Solar Selective Absorbers with Gas Mixtures

  • Park, Soo-Young;Han, Sang-Uk;Kim, Hyun-Hoo;Jang, Gun-Eik;Lee, Yong-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.264-267
    • /
    • 2015
  • AlCrNO cermet films were prepared on aluminum substrates using a DC-reactive magnetron sputtering method and a water-cooled Al:Cr target. The Al2O3/AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF)/Al/substrate of the 5 multi-layers was prepared according to the Ar and (N2 + O2) gas-mixture rates. The Al2O3 of the top layer is the anti-reflection layer of triple AlCrNO (LMVF)/AlCrNO (MMVF)/AlCrNO (HMVF) layers, and an Al metal forms the infrared reflection layer. In this study, the crystallinity and surface properties of the AlCrNO thin films were estimated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM), while the composition of the thin films was systematically investigated using Auger electron spectroscopy (AES). The optical properties of the wavelength spectrum were recorded using UH4150 spectrophotometry (UV-Vis-NIR) at a range of 0.3 μm to 2.5 μm.

Oxidation of Hot Pressed Cr2AlC Compounds at 900-1200℃ for Up to 50 Hours in Air (열간 압축법으로 제조된 Cr2AlC 화합물의 900-1200℃, 50시간 동안의 대기중 산화)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • $Cr_2AlC$ compounds were synthesized by hot pressing, and oxidized between 900 and $1200^{\circ}C$ in air for up to 50 hours. They oxidized to a thin $Al_2O_3$ layer containing a small amount of $Cr_2O_3$with the liberation of carbon as CO or $CO_2$ gases. The consumption of Al to form the $Al_2O_3$ layer led to the depletion of Al and enrichment of Cr just below the $Al_2O_3$ layer, resulting in the formation of an underlying $Cr_7C_3$ layer. As the oxidation temperature and time increased, the $Cr_7C_3$ oxide layer and the underlying $Cr_7C_3$ layer thickened. The oxidation resistance of $Cr_2AlC$ was generally good due to the formation of the $Al_2O_3$ barrier layer.

Device Performances Related to Gate Leakage Current in Al2O3/AlGaN/GaN MISHFETs

  • Kim, Do-Kywn;Sindhuri, V.;Kim, Dong-Seok;Jo, Young-Woo;Kang, Hee-Sung;Jang, Young-In;Kang, In Man;Bae, Youngho;Hahm, Sung-Ho;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this paper, we have characterized the electrical properties related to gate leakage current in AlGaN/GaN MISHFETs with varying the thickness (0 to 10 nm) of $Al_2O_3$ gate insulator which also serves as a surface protection layer during high-temperature RTP. The sheet resistance of the unprotected TLM pattern after RTP was rapidly increased to $1323{\Omega}/{\square}$ from the value of $400{\Omega}/{\square}$ of the as-grown sample due to thermal damage during high temperature RTP. On the other hand, the sheet resistances of the TLM pattern protected with thin $Al_2O_3$ layer (when its thickness is larger than 5 nm) were slightly decreased after high-temperature RTP since the deposited $Al_2O_3$ layer effectively neutralizes the acceptor-like states on the surface of AlGaN layer which in turn increases the 2DEG density. AlGaN/GaN MISHFET with 8 nm-thick $Al_2O_3$ gate insulator exhibited extremely low gate leakage current of $10^{-9}A/mm$, which led to superior device performances such as a very low subthreshold swing (SS) of 80 mV/dec and high $I_{on}/I_{off}$ ratio of ${\sim}10^{10}$. The PF emission and FN tunneling models were used to characterize the gate leakage currents of the devices. The device with 5 nm-thick $Al_2O_3$ layer exhibited both PF emission and FN tunneling at relatively lower gate voltages compared to that with 8 nm-thick $Al_2O_3$ layer due to thinner $Al_2O_3$ layer, as expected. The device with 10 nm-thick $Al_2O_3$ layer, however, showed very high gate leakage current of $5.5{\times}10^{-4}A/mm$ due to poly-crystallization of the $Al_2O_3$ layer during the high-temperature RTP, which led to very poor performances.

Electrical Characteristics of Engineered Tunnel Barrier using $SiO_2/HfO_2$ and $Al_2O_3/HfO_2$ stacks ($SiO_2/HfO_2$$Al_2O_3/HfO_2$를 이용한 Engineered Tunnel Barrier의 전기적 특성)

  • Kim, Kwan-Su;Park, Goon-Ho;Yoon, Jong-Won;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.127-128
    • /
    • 2008
  • The electrical characteristics of VARIOT (variable oxide thickness) with various $HfO_2$ thicknesses on thin $SiO_2$ or $Al_2O_3$ layer were investigated. Especially, the charge trapping characteristics of $HfO_2$ layer were intensively studied. The thin $HfO_2$ layer has small charge trapping characteristics while the thick $HfO_2$ layer has large memory window. Therefore, the $HfO_2$ layer is superior material and can be applied to charge storage as well as tunneling barrier of the non-volatile memory applications.

  • PDF

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.119-124
    • /
    • 2013
  • Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF