DOI QR코드

DOI QR Code

High-temperature Oxidation of Nano-multilayered AlTiSiN Thin Films deposited on WC-based carbides

  • Hwang, Yeon Sang (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • Received : 2013.04.09
  • Accepted : 2013.06.20
  • Published : 2013.06.15

Abstract

Nano-multilayered, crystalline AlTiSiN thin films were deposited on WC-TiC-Co substrates by the cathodic arc plasma deposition. The deposited film consisted of wurtzite-type AlN, NaCl-type TiN, and tetragonal $Ti_2N$ phases. Their oxidation characteristics were studied at 800 and $900^{\circ}C$ for up to 20 h in air. The WC-TiC-Co oxidized fast with large weight gains. By contrast, the AlTiSiN film displayed superior oxidation resistance, due mainly to formation of the ${\alpha}-Al_2O_3$-rich surface oxide layer, below which an ($Al_2O_3$, $TiO_2$, $SiO_2$)-intermixed scale existed. Their oxidation progressed primarily by the outward diffusion of nitrogen, combined with the inward transport of oxygen that gradually reacted with Al, Ti, and Si in the film.

Keywords

References

  1. I. Milosev, H. H. Strehblow and B. Navinsek, Thin Solid Films, 303, 246 (1997). https://doi.org/10.1016/S0040-6090(97)00069-2
  2. H. Ichimura and A. Kawana, J. Mater. Res., 8, 1093 (1993). https://doi.org/10.1557/JMR.1993.1093
  3. S. H. Yao, Y. L. Su, W. H. Kao and T. H. Liu, Tribol. Int., 39, 332 (2006). https://doi.org/10.1016/j.triboint.2005.02.015
  4. D. G. Kim, T. Y. Seong and Y. J. Baik, Thin Solid Films, 397, 203 (2001). https://doi.org/10.1016/S0040-6090(01)01407-9
  5. Y. H. Jeong, D. M. Kwang, C. H. Chung, W. G. Kim and H. C. Choe, Corros. Sci. Tech., 10, 212 (2011).
  6. W. D. Munz, J. Vac. Sci. Technol., A4, 2695 (1986).
  7. D. McIntyre, J. E. Greene, G. Hakansson, J. E. Sundgren and W. D. Munz, J. Appl. Phys., 67, 1542 (1990). https://doi.org/10.1063/1.345664
  8. L. Rebouta, F. Vaz, M. Andritschky and M. F. Da Silva, Surf. Coat. Technol., 70, 76 (1995).
  9. F. Vaz, L. Rebouta, M. Andritschky, M. F. Da Silva and J. C. Soares, Surf. Coat. Technol., 98, 912 (1998). https://doi.org/10.1016/S0257-8972(97)00127-8
  10. A. Vennemann, H. R. Stock, J. Kohlscheen, S. Rambadt and G. Erkens, Surf. Coat. Technol., 408, 174 (2003).
  11. M. Pfeiler, J. Zechner, M. Penoy, C. Michotte, C. Mitterer and M. Kathrein, Surf. Coat. Technol., 203, 3104 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.036
  12. Y. Y. Chang and S. M. Yang, Thin Solid Films, 518, s34 (2010). https://doi.org/10.1016/j.tsf.2010.03.020
  13. M. Parlinska-Wojtan, A. Karimi, O. Coddet, T. Cselle and M. Morstein, Surf. Coat. Technol., 344, 188 (2004).
  14. A. Flink, J.M. Andersson, B. Alling, R. Daniel, J. Sjolen, L. Karlsson and L. Hultman, Thin Solid Films, 517, 714 (2008). https://doi.org/10.1016/j.tsf.2008.08.126
  15. N. Fukumoto, H. Ezura and T. Suzuki, Surf. Coat. Technol., 204, 902 (2009). https://doi.org/10.1016/j.surfcoat.2009.04.027
  16. Y. Tanaka, N. Ichimiya, Y. Onishi and Y. Yamada, Surf. Coat. Technol., 215, 146 (2001).
  17. O. Durand-Drouhin, A. E. Santana, A. Karimi, V. H. Derflinger and A. Schutze, Surf. Coat. Technol., 260, 163 (2003).
  18. P. J. Martin, A. Bendavid, J. M. Cairney and M. Hoffman, Surf. Coat. Technol., 200, 2228 (2005). https://doi.org/10.1016/j.surfcoat.2004.06.012
  19. S. Q. Wang, L. Chen, B. Yang, K. K. Chang, Y. Du, J. Li and T. Gang, Int. J. Refract. Met. Hard Mater., 28, 593 (2010). https://doi.org/10.1016/j.ijrmhm.2010.05.001
  20. Y. Y. Chang, J. Nanosci. Nanotechno., 10, 4762 (2010). https://doi.org/10.1166/jnn.2010.1678
  21. S. K. Kim, P. V. Vinh, J. H. Kim and T. Ngoc, Surf. Coat. Technol., 200, 1391 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.109
  22. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature of Metals, 2nd ed, Cambridge University Press, England (2006).
  23. P. Kofstad, Oxid. Met., 44, 3 (1995). https://doi.org/10.1007/BF01046721
  24. I. Barin, Thermochemical Data of Pure Substances, VCH, Weinhein, Germany (1989).
  25. H. Holleck, J. Vac. Sci. Technol., A4, 2661 (1986).

Cited by

  1. High-temperature oxidation behaviour of AlTiSiN and AlCrSiN coatings pp.1743-2944, 2018, https://doi.org/10.1080/02670844.2018.1444545
  2. Influence of vacuum annealing on structures and properties of AlTiSiN coatings with corrosion resistance vol.312, pp.None, 2017, https://doi.org/10.1016/j.surfcoat.2016.08.006