• Title/Summary/Keyword: thermoelectric materials

Search Result 398, Processing Time 0.022 seconds

Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition (원자층 증착법을 이용한 열전 소재 연구 동향)

  • Lee, Seunghyeok;Park, Tae Joo;Kim, Seong Keun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Enhancement of Thermoelectric Performance in Spark Plasma Sintered p-Type Bi0.5Sb1.5Te3.0 Compound via Hot Isostatic Pressing (HIP) Induced Reduction of Lattice Thermal Conductivity (열간등방가압 공정을 통한 P형 Bi0.5Sb1.5Te3.0 소결체의 격자 열전도도 감소 및 열전 특성 향상)

  • Soo-Ho Jung;Ye Jin Woo;Kyung Tae Kim;Seungki Jo
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2023
  • High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100℃. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.

Enhancing Electrical Properties of N-type Bismuth Telluride Alloys through Graphene Oxide Incorporation in Extrusion 3D Printing

  • Jinhee Bae;Seungki Jo ;Kyung Tae Kim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.318-323
    • /
    • 2023
  • The thermoelectric effect, which converts waste heat into electricity, holds promise as a renewable energy technology. Recently, bismuth telluride (Bi2Te3)-based alloys are being recognized as important materials for practical applications in the temperature range from room temperature to 500 K. However, conventional sintering processes impose limitations on shape-changeable and tailorable Bi2Te3 materials. To overcome these issues, three-dimensional (3D) printing (additive manufacturing) is being adopted. Although some research results have been reported, relatively few studies on 3D printed thermoelectric materials are being carried out. In this study, we utilize extrusion 3D printing to manufacture n-type Bi1.7Sb0.3Te3 (N-BST). The ink is produced without using organic binders, which could negatively influence its thermoelectric properties. Furthermore, we introduce graphene oxide (GO) at the crystal interface to enhance the electrical properties. The formed N-BST composites exhibit significantly improved electrical conductivity and a higher Seebeck coefficient as the GO content increases. Therefore, we propose that the combination of the extrusion 3D printing process (Direct Ink Writing, DIW) and the incorporation of GO into N-BST offers a convenient and effective approach for achieving higher thermoelectric efficiency.

Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip;Yoon, Sang-Min;Kim, Eun-Bin;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2016
  • The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

Thermoelectric Properties of Co1-xFexSb3 Prepared by Hot Pressing (열간압축성형으로 제조한 Co1-xFexSb3의 열전특성)

  • Park, Kwan-Ho;Ur, Soon-Chul;Kim, Il-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.435-438
    • /
    • 2006
  • The hot pressing was employed to prepare Fe-doped $CoSb_3$ skutterudites and their thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the hot pressing under 60MPa at 773 K for 2 hrs. Iron atoms acted as electron acceptors by substituting cobalt atoms. Thermoelectric properties were remarkably improved by the appropriate doping. $Co_{0.7}Fe_{0.3}Sb_3$ was found as an optimum composition for the best thermoelectric property in this work.

Recent Advances in Thermoelectric Power Generation Technology

  • Sharma, Ashutosh;Lee, Jun Hyeong;Kim, Kyung Heum;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Thermoelectric power generation (TEG) technology with high figure of merit (ZT) has become the need of the modern world. TEG is a potent technology which can tackle most of the environmental issues such as global warming, change in climatic conditions over the globe, and for burning out of various resources of non-renewable energy like as petroleum deposits and gasolines. Although thermoelectric materials generally convert the heat energy from wastes to electricity according to the theories Seebeck and Peltier effects yet they have not been fully exploited to realize their potential. Researchers are focusing mainly on how to improve the current ZT value from 1 to 2 or even 3 by various approaches. However, a higher ZT value is found to be difficult due to complex thermoelectric properties of materials. Hence, there is a need for developing materials with high figure of merit. Recently, various nanotechnological approaches have been incorporated to improve the thermoelectric properties of materials. In this review paper, the authors have performed a thorough literature survey of various kinds of TEG technology.

Defect Engineering for High-Performance Thermoelectric Semiconductors (결함제어를 통한 열전 반도체 연구 동향)

  • Min, Yuho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.