DOI QR코드

DOI QR Code

Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition

원자층 증착법을 이용한 열전 소재 연구 동향

  • Lee, Seunghyeok (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Park, Tae Joo (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Kim, Seong Keun (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • 이승혁 (한국과학기술연구원 전자재료연구센터) ;
  • 박태주 (한양대학교 재료화학공학과) ;
  • 김성근 (한국과학기술연구원 전자재료연구센터)
  • Received : 2021.12.08
  • Accepted : 2021.12.23
  • Published : 2022.02.28

Abstract

Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.

Keywords

References

  1. G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105. https://doi.org/10.1038/nmat2090
  2. F. J. DiSalvo: Science, 285 (1999) 703. https://doi.org/10.1126/science.285.5428.703
  3. J. P. Heremans, B. Wiendlocha and A. M. Chamoire: Energy Environ. Sci., 5 (2012) 5510. https://doi.org/10.1039/C1EE02612G
  4. W. Liu, X. Yan, G. Chen and Z. Ren: Nano Energy, 1 (2012) 42. https://doi.org/10.1016/j.nanoen.2011.10.001
  5. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim: Science, 348 (2015) 109. https://doi.org/10.1126/science.aaa4166
  6. Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357. https://doi.org/10.1002/adfm.200901512
  7. G. Tan, L.-D. Zhao, F. Shi, J. W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. P. Dravid, C. Uher and M. G. Kanatzidis: J. Am. Chem. Soc., 136 (2014) 7006. https://doi.org/10.1021/ja500860m
  8. C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis: Adv. Mater., 22 (2010) 3970. https://doi.org/10.1002/adma.201000839
  9. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D .Z. Wang, Z.F. Ren, J.-P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043. https://doi.org/10.1002/adma.200600527
  10. D.-K. Ko, Y. Kang and C. B. Murray: Nano Lett., 11 (2011), 2841. https://doi.org/10.1021/nl2012246
  11. W. H. Shin, J. W. Roh, B. Ryu, H. J. Chang, H. S. Kim, S. Lee, W. S. Seo and K. Ahn: ACS Appl. Mater. Interfaces, 10 (2018), 3689. https://doi.org/10.1021/acsami.7b18451
  12. R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis and X. Tang: Energy Environ. Sci., 11 (2018) 1520. https://doi.org/10.1039/c8ee00290h
  13. Z. Liang, M. J. Boland, K. Butrouna, D. R. Strachan and K. R. Graham: J. Mater. Chem. A, 5 (2017) 15891. https://doi.org/10.1039/C7TA02307C
  14. A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus and Q. Xiong: Nano Lett., 12 (2012) 4305. https://doi.org/10.1021/nl302017w
  15. A. Pakdel, Q. Guo, V. Nicolosi and T. Mori: J. Mater. Chem. A, 6 (2018) 21341. https://doi.org/10.1039/C8TA08238C
  16. J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang: Mater. Sci. Eng., B, 117 (2005) 334. https://doi.org/10.1016/j.mseb.2005.01.002
  17. S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett and J. W. G. Bos: J. Mater. Chem. C, 4 (2016) 1685. https://doi.org/10.1039/C6TC00204H
  18. Z. Jian, Z. Chen, W. Li, J. Yang, W. Zhang and Y. Pei: J. Mater. Chem. C, 3 (2015) 12410. https://doi.org/10.1039/C5TC03068D
  19. C. Fu, T. Zhu, Y. Liu, H. Xie and X. Zhao: Energy Environ. Sci., 8 (2015) 216. https://doi.org/10.1039/C4EE03042G
  20. Y. Pei, H. Wang and G. J. Snyder: Adv. Mater., 24 (2012) 6125. https://doi.org/10.1002/adma.201202919
  21. J. Li, S. Zhang, F. Jia, S. Zheng, X. Shi, D. Jiang, S. Wang, G. Lu, L. Wu and Z.-G. Chen: Mater. Today Phys., 15 (2020) 100269. https://doi.org/10.1016/j.mtphys.2020.100269
  22. L. Hu, T. Zhu, X. Liu and X. Zhao: Adv. Funct. Mater., 24 (2014) 5211. https://doi.org/10.1002/adfm.201400474
  23. H. Wang, G. Luo, C. Tan, C. Xiong, Z. Guo, Y. Yin, B. Yu, Y. Xiao, H. Hu, G. Liu, X. Tan, J. G. Noudem and J. Jiang: ACS Appl. Mater. Interfaces, 12 (2020) 31612. https://doi.org/10.1021/acsami.0c07376
  24. J. S. Yoon, J. M. Song, J. U. Rahman, S. Lee, W. S. Seo, K. H. Lee, S. Kim, H.-S. Kim, S. Kim and W. H. Shin: Acta Mater., 158 (2018) 289. https://doi.org/10.1016/j.actamat.2018.07.067
  25. X. Ji, J. He, Z. Su, N. Gothard and T. M. Tritt: J. Appl. Phys., 104 (2008) 034907. https://doi.org/10.1063/1.2963706
  26. K.-C. Kim, S.-S. Lim, S. H. Lee, J. Hong, D.-Y. Cho, A. Y. Mohamed, C. M. Koo, S.-H. Baek, J.-S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146. https://doi.org/10.1021/acsnano.9b02574
  27. S.-S. Lim, K.-C. Kim, S. Lee, H.-H. Park, S.-H. Baek, J.- S. Kim and S. K. Kim: Coatings, 10 (2020) 572. https://doi.org/10.3390/coatings10060572
  28. M. R.-Bravo, A. Moure, J. F. Fernandez and M. M.-Gonzalez: RSC Adv., 5 (2015) 41653. https://doi.org/10.1039/C5RA03942H
  29. B. M. Knez, K. Nielsch and L. Niinisto: Adv. Mater., 19 (2007) 3425. https://doi.org/10.1002/adma.200700079
  30. C. Marichy, M. Bechelany and N. Pinna: Adv. Mater., 24 (2012) 1017. https://doi.org/10.1002/adma.201104129
  31. S. Adhikari, S. Selvaraj and D .-H. Kim: Adv. Mater. Interfaces, 5 (2018) 1800581. https://doi.org/10.1002/admi.201800581
  32. S. M. George: Chem. Rev., 110 (2010) 111. https://doi.org/10.1021/cr900056b
  33. M. Ritala and J. Niinisto: ECS Transactions, 25 (2009) 641. https://doi.org/10.1149/1.3207651
  34. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vahaee, Z. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634. https://doi.org/10.1126/science.1156446
  35. W. Kim, J. Zide, A. Gossard, D. Klenov and S. Stemmer: Phys. Rev. Lett., 96 (2006) 0459012.
  36. S. V. Faleev and F. Leonard: Phys. Rev. B, 77 (2008) 214304. https://doi.org/10.1103/physrevb.77.214304
  37. W. Zheng, Y. Luo, Y. Liu, J. Shi, R. Xiong and Z. Wang: J. Phys. Chem. Lett., 10 (2019) 4903. https://doi.org/10.1021/acs.jpclett.9b02312
  38. H. R. Sun, X. P. Jia, P. Lv, L. Deng, X. Guo, Y. W. Zhang, B. Sun, B.W. Liu and H.G. Ma: RSC Adv., 5 (2015) 61324. https://doi.org/10.1039/C5RA08608F
  39. A. Schmitz, C. Schmid, J. D. Boor and E. Muller: J. Nanosci. Nanotechnol., 17 (2017) 1547. https://doi.org/10.1166/jnn.2017.13727
  40. Y. Zhang, S. Li, F. Liu, C. Zhang, L. Hu, W. Ao, Y. Li, J. Li, H. Xie, Y. Xiao and F. Pan: J. Mater. Chem. A, 7 (2019) 26053. https://doi.org/10.1039/c9ta09550k
  41. S. He, A. Bahrami, X. Zhang, I. G. Martinez, S. Lehmann and K. Nielsch: Adv. Mater. Technol., (2021) 2100953.
  42. S.-I. Kim, J. An, W.-J. Lee, S. H. Kwon, W. H. Nam, N. V. Du, J.-M. Oh, S.-M. Koo, J. Y. Cho and W. H. Shin: Nanomaterials, 10 (2020) 2270. https://doi.org/10.3390/nano10112270
  43. S. Li, M. Chu, W. Zhu, R. Wang, Q. Wang, F. Liu, M. Gu, Y. Xiao and F. Pan: Nanoscale, 12 (2020) 1580. https://doi.org/10.1039/c9nr07591g
  44. S. Li, Z. Huang, R. Wang, C. Wang, W. Zhao, N. Yang, F. Liu, J. Luo, Y. Xiao and F. Pan: J. Mater. Chem. A, 9 (2021) 11442. https://doi.org/10.1039/D1TA01016F
  45. S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257. https://doi.org/10.1016/j.nanoen.2018.04.047
  46. S.-S. Lim, K.-C. Kim, H. Jeon, J.-Y. Kim, J.-Y. Kang, H.- H. Park, S.-H. Baek, J.-S. Kim and S. K. Kim: J. Eur. Ceram. Soc., 40 (2020) 3592. https://doi.org/10.1016/j.jeurceramsoc.2020.04.013
  47. M. J. Jung, Y. J. Yun, J. Byun and B. J. Choi: J. Korean Powder Metall. Inst., 28 (2021) 239. https://doi.org/10.4150/KPMI.2021.28.3.239
  48. L. D. Zhao, B.-P. Zhang, W. S. Liu, H. L. Zhang and J.-F. Li: J. Alloys Compd., 467 (2009) 91. https://doi.org/10.1016/j.jallcom.2007.12.063
  49. T. Hamachiyo, M. Ashida and K. Hasezaki: J. Electron. Mater., 38 (2009) 1048. https://doi.org/10.1007/s11664-009-0718-2
  50. Y. Zheng, G. Tan, Y. Luo, X. Su, Y. Yan and X. Tang: Materials, 10 (2017) 617. https://doi.org/10.3390/ma10060617