Browse > Article
http://dx.doi.org/10.6117/kmeps.2017.24.1.009

Recent Advances in Thermoelectric Power Generation Technology  

Sharma, Ashutosh (Dept. of Materials Science and Engineering, University of Seoul)
Lee, Jun Hyeong (Duksan Himetal Co. Ltd.)
Kim, Kyung Heum (Duksan Himetal Co. Ltd.)
Jung, Jae Pil (Dept. of Materials Science and Engineering, University of Seoul)
Publication Information
Journal of the Microelectronics and Packaging Society / v.24, no.1, 2017 , pp. 9-16 More about this Journal
Abstract
Thermoelectric power generation (TEG) technology with high figure of merit (ZT) has become the need of the modern world. TEG is a potent technology which can tackle most of the environmental issues such as global warming, change in climatic conditions over the globe, and for burning out of various resources of non-renewable energy like as petroleum deposits and gasolines. Although thermoelectric materials generally convert the heat energy from wastes to electricity according to the theories Seebeck and Peltier effects yet they have not been fully exploited to realize their potential. Researchers are focusing mainly on how to improve the current ZT value from 1 to 2 or even 3 by various approaches. However, a higher ZT value is found to be difficult due to complex thermoelectric properties of materials. Hence, there is a need for developing materials with high figure of merit. Recently, various nanotechnological approaches have been incorporated to improve the thermoelectric properties of materials. In this review paper, the authors have performed a thorough literature survey of various kinds of TEG technology.
Keywords
thermoelectric; figure of merit (ZT); power generation; Seebeck effect; nanotechnology; energy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. S. Lewis and G. Crabtree, "Basic Research Needs for Solar Energy Utilization: Report of the Basic Energy Sciences Workshop on Solar Energy Utilization", DOE, USA, (2005).
2 B. I. Ismail and W. H. Ahmed, "Thermoelectric Power Generation using Waste-Heat Energy as an Alternative Green Technology", Recent Patents on Electrical & Electronic Engineering, 2(1), 27 (2009).   DOI
3 K. Biswas, J. He, I. D. Blum, C.-I Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid and M. G. Kanatzidis, "High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures", Nature, 489, 414 (2012).   DOI
4 E. S. Toberer, F. M. Andrew and G. J. Snyder, "Zintl Chemistry for Designing High Efficiency Thermoelectric Materials", Chemistry of Materials, 22(3), 624 (2009).   DOI
5 J. R. Szczech, J. M. Higgins and S. Jin, "Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials", Journal of Materials Chemistry, 21(12), 4037 (2011).   DOI
6 C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, "Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features", Advanced Materials, 22(36), 3970 (2010).   DOI
7 R. E. Hummel, "Electronic properties of materials", Springer Science & Business Media (2011).
8 P. Pichanusakorn and P. Bandaru, "Nanostructured Thermoelectrics", Materials Science and Engineering: R: Reports, 67(2), 19 (2010).   DOI
9 T. M. Tritt, G. Mahan, H. B. Lyon, M. G. Kanatzidis, "Thermoelectric materials-new directions and approaches", Materials Research Society, Warrendale, PA (1997).
10 M. B. A. Bashir, S. M. Said, M. F. M. Sabri, D. A. Shnawah and M. H. Elsheikh, "Recent Advances on $Mg_2Si_{1-x}Sn_x $ Materials for Thermoelectric Generation", Renewable and Sustainable Energy Reviews, 37, 569 (2014).   DOI
11 H. S. Kim, W. Liu, G. Chen, C.-W. Chu and Z. Ren, "Relationship between Thermoelectric Figure of Merit and Energy Conversion Efficiency", PNAS, 112(27), 8205 (2015).   DOI
12 T. H. An, C. Park, W. S. Seo, S. M. Choi, I. H. Kim and S. U. Kim, "Enhancement of p-type Thermoelectric Properties in an Mg2Sn System", Journal of the Korean Physical Society, 60(10), 1717 (2012).   DOI
13 C. B. Vining, "An Inconvenient Truth about Thermoelectrics", Nature materials, 8(2), 83 (2009).   DOI
14 D. M. Rowe, "Thermoelectrics Handbook: Macro to Nano", CRC Taylor & Francis, Boca Raton (2006).
15 X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang and L. Chen, "Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports", J. Am. Chem. Soc., 133, 7837 (2011).   DOI
16 C. Han, Z. Li and S.X. Dou, "Recent Progress in Thermoelectric Materials", Chinese Science Bulletin, 59(18), 2073 (2014).   DOI
17 Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen and G. J. Snyder, "Convergence of Electronic Bands for High Performance Bulk Thermoelectrics", Nature, 473, 66 (2011).   DOI
18 L. D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures", J. Am. Chem. Soc., 135, 7364 (2013).   DOI
19 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States", Science, 321, 554 (2008).   DOI
20 X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J. R. Salvador, W. Zhang, L. Chen and W. W.-Ng, "On the Design of High-Efficiency Thermoelectric Clathrates Through a Systematic Cross-Substitution of Framework Elements", Adv. Funct. Mater., 20, 755 (2010).   DOI
21 L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, "Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals", Nature, 508, 373 (2014).   DOI
22 Q. Shen, C. T. Goto, T. H. J. Yang, G. P. Meisner and C. Uher, "Effects of Partial Substitution of Ni by Pd on the Thermoelectric Properties of ZrNiSn-Based Half-Heusler Compounds", Appl. Phys. Lett., 79, 4165 (2001).   DOI
23 W. Xie, J. He, H. J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J. R. D. Copley, C. M. Brown, Q. Zhang and T. M. Tritt, "Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi, Sb)2Te3 Nanocomposites", Nano Lett., 10, 3283 (2010).   DOI
24 K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, "Cubic $AgPb_mSbTe2_{+m}$: Bulk Thermoelectric Materials with High Figure of Merit", Science, 303, 818 (2004).   DOI
25 X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen and Z. F. Ren, "Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy", Appl. Phys. Lett., 93, 193121 (2008).   DOI
26 G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat and B. B. Iversen, "Disordered Zinc in Zn4Sb3 with Phonon-Glass and Electron-Crystal Thermoelectric Properties", Nat. Mater., 3, 458 (2004).   DOI
27 J.-S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim and G. Kotliar, "Peierls Distortion as a Route to High Thermoelectric Performance in In4Se3-Delta Crystals", Nature, 459, 965 (2009).   DOI
28 C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu, "Realizing High Figure of Merit in Heavy-Band p-Type Half- Heusler Thermoelectric Materials", Nat. Commun., 6, 8144 (2015).   DOI
29 G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen and Z. Ren, "Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys", Nano Lett., 8(12), 4670 (2008).   DOI
30 J. Yang , L. Xi , W. Qiu, L. Wu , X.Shi , L. Chen , J. Yang, W. Zhang, C. Uher and D. J Singh, "On the Tuning of Electrical and Thermal Transport in Thermoelectrics: An Integrated Theory-Experiment Perspective", Computational Materials, 2, 1 (2016).   DOI
31 J.C. Zheng, "Recent Advances on Thermoelectric Materials", Front. Phys. China, 3(3), 269 (2008).   DOI
32 S. M. Kauzlarich, S. R. Brown and G. J. Snyder, "Zintl Phase for Thermoelectric Devices", Dalton Trans., 2099, (2007).
33 S. G. Jeffrey and E. S. Toberer, "Complex Thermoelectric Materials", Nature materials, 7(2), 105 (2008).   DOI
34 G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen and B. Yang, "Superlattice Based Thin film Thermoelectric Modules with High Cooling Fluxes", Nature communications, 7 (2016).
35 M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, "Power Factor Enhancement by Modulation Doping in Bulk Nanocomposites", Nano letters, 11, 2225 (2011).   DOI
36 G. H. Grosch and K. J. Range, "Studies on AB2-Type Intermetallic Compounds, I. Mg 2 Ge and Mg 2 Sn: Single-Crystal Structure Refinement and Ab Initio Calculations", Journal of alloys and compounds, 235(2), 250 (1996).   DOI
37 J. Shuai, H. Geng, Y. Lan, Z. Zhu, C. Wang, Z. Liu, J. Bao, C.-Wu Chu, J. Sui and Z. Ren, "Higher Thermoelectric Performance of Zintl Phases $(Eu_{0.5}Yb_{0.5})_{1−x}Ca_xMg_2Bi_2$ by Band Engineering and Strain Fluctuation", PNAS, 113(48), 13576 (2016).   DOI
38 J. de Boor, S. Gupta, H. Kolb, T. Dasgupta and E. Muller, "Thermoelectric Transport and Microstructure of Optimized Mg 2 Si 0.8 Sn 0.2", Journal of Materials Chemistry C, 3(40), 10467 (2015).   DOI
39 H. Y. Chen and N. Savvides, "Microstructure and Thermoelectric Properties of n-and p-type Doped Mg2Sn Compounds Prepared by the Modified Bridgman Method", Journal of Electronic materials, 38, 1056 (2009).   DOI
40 X. Li, S.M. Li, S.K. Feng, H. Zhong and H.Z. Fu, "Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal", Journal of Electronic Materials, 45, 2895 (2016).   DOI
41 G. B. Granger, C. Navone, J. Leforestier, M. Boidot, K. Romanjek, J. Carrete and J. Simon, "Microstructure Investigations and Thermoelectrical Properties of an N Type Magnesium-Silicon-Tin Alloy Sintered from a Gas-Phase Atomized Powder", Acta Materialia, 96, 437 (2015).   DOI
42 https://www.electronics-cooling.com/2011/09/thin-film-thermoelectrics- today-and-tomorrow/