Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.5.1

Defect Engineering for High-Performance Thermoelectric Semiconductors  

Min, Yuho (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.5, 2022 , pp. 419-430 More about this Journal
Abstract
Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.
Keywords
Defect engineering; Thermoelectrics; Semiconductor; Thermal transport; Electrical transport;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Lee, S. I. Kim, H. S. Kim, and S. W. Kim, ACS Appl. Energy Mater., 3, 2214 (2020). [DOI: https://doi.org/10.1021/acsaem.9b02131]   DOI
2 J. Callaway and H. C. von Baeyer, Phys. Rev., 120, 1149 (1960). [DOI: https://doi.org/10.1103/PhysRev.120.1149]   DOI
3 J. He, J. R. Sootsman, S. N. Girard, J. C. Zheng, J. Wen, Y. Zhu, M. G. Kanatzidis, and V. P. Dravid, J. Am. Chem. Soc., 132, 8669 (2010). [DOI: https://doi.org/10.1021/ja1010948]   DOI
4 Y. Lee, S. H. Lo, C. Chen, H. Sun, D. Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Commn., 5, 3640 (2014). [DOI: https://doi.org/10.1038/ncomms4640]   DOI
5 G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett., 80, 3551 (1998). [DOI: https://doi.org/10.1103/PhysRevLett.80.3551]   DOI
6 K. H. Lee and S. W. Kim, J. Kor. Ceram. Soc., 54, 75 (2017). [DOI: https://doi.org/10.4191/kcers.2017.54.2.10]   DOI
7 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Jurosaki, A. Charoenphakdee, S. Yananaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: https://doi.org/10.1126/science.1159725]   DOI
8 C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, Phys. Rev. B, 80, 233201 (2009). [DOI: https://doi.org/10.1103/PhysRevB.80.233201]   DOI
9 Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, Proc. Natl. Acad. Sci. U. S. A., 110, 13261 (2013). [DOI: https://doi.org/10.1073/pnas.1305735110]   DOI
10 F. R. Ovik, B. D. Long, M. C. Barma, M. Riaz, M. F. M. Sabri, S. M. Said, and R. Saidur, Renewable Sustainable Energy Rev., 64, 635 (2016). [DOI: https://doi.org/10.1016/j.rser.2016.06.035]   DOI
11 Y. Zheng, T. J. Slade, L. Hu, X. Y. Tan, Y. Luo, Z. Z. Luo, J. Xu, Q. Yan, and M. G. Kanatzidis, Chem. Soc. Rev., 50, 9022 (2021). [DOI: https://doi.org/10.1039/d1cs00347j]   DOI
12 Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, Adv. Mater., 25, 1425 (2013). [DOI: https://doi.org/10.1002/adma.201203764]   DOI
13 D. Ding, D. Wang, M. Zhao, J. Lv, H. Jiang, C. Lu, and Z. Tang, Adv. Mater., 29, 1603444 (2017). [DOI: https://doi.org/10.1002/adma.201603444]   DOI
14 J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J. V. Zaikina, and K. Kovnir, Mater. Sci. Eng. R Rep., 108, 1 (2016). [DOI: https://doi.org/10.1016/j.mser.2016.08.001]   DOI
15 L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47, 12727 (1993). [DOI: https://doi.org/10.1103/physrevb.47.12727]   DOI
16 F. J. Disalvo, Science, 285, 703 (1999). [DOI: https://doi.org/10.1126/science.285.5428.703]   DOI
17 Z. Li, C. Xiao, H. Zhu, and Y. Xie, J. Am. Chem. Soc., 138, 14810 (2016). [DOI: https://doi.org/10.1021/jacs.6b08748]   DOI
18 Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, Nat. Mater., 14, 1223 (2015). [DOI: https://doi.org/10.1038/nmat4430]   DOI
19 S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Science, 348, 109 (2015). [DOI: https://doi.org/10.1126/science.aaa4166]   DOI
20 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature, 473, 66 (2011). [DOI: https://doi.org/10.1038/nature09996]   DOI
21 E. Shapria, A. Holtzman, D. Marchak, and Y. Selzer, Nano Lett., 12, 808 (2012). [DOI: https://doi.org/10.1021/nl2038425]   DOI
22 Y. Zhang and G. D. Stucky, Chem. Mater., 26, 837 (2014). [DOI: https://doi.org/10.1021/cm402150j]   DOI
23 L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, and M. G. Kanatzidis, Science, 351, 141 (2015). [DOI: https://doi.org/10.1126/science.aad3749]   DOI
24 R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M. Y. Chou, M. T. Agne, J. He, G. J. Snyder, X. Shi, and L. Chen, Energy Environ. Sci., 10, 1928 (2017). [DOI: https://doi.org/10.1039/C7EE01737E]   DOI
25 K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem., 3, 160 (2011). [DOI: https://doi.org/10.1038/nchem.955]   DOI
26 Y. Yu, C. Zhou, S. Zhang, M. Zhu, M. Wuttig, C. Scheu, D. Raabe, G. J. Synder, B. Gault, and O, Cojocaru-Miredin, Mater. Today, 32, 260 (2020). [DOI: https://doi.org/10.1016/j.mattod.2019.11.010]   DOI
27 L. P. Hu, T. J. Zhu, Y. G. Wang, H. H. Xie, Z. J. Xu, and X. B. Zhao, NPG Asia Mater., 6, e88 (2014). [DOI: https://doi.org/10.1038/am.2013.86]   DOI
28 Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J. W. Roh, S. I. Kim, K. H. Lee, and U. Jeong, ACS Nano, 9, 6843 (2015). [DOI: https://doi.org/10.1021/nn507250r]   DOI
29 D. Wu, L. Wu, D. He, L. D. Zhao, W. Li, M. Wu, M. Jin, J. Xu, J. Jiang, L. H. Y. Zhu, M. G. Kanatzidis, and J. He, Nano Energy, 35, 321 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.04.004]   DOI
30 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science, 320, 634 (2008). [DOI: https://doi.org/10.1126/science.1156446]   DOI
31 H. Cho, S. Y. Back, J. H. Yun, S. Byon, H. Jin, and J. S. Rhyee, ACS Appl. Mater. Interfaces, 12, 38076 (2020). [DOI: https://doi.org/10.1021/acsami.0c09529]   DOI
32 Q. Zhao, B. Qin, D. Wang, Y. Qiu, and L. D. Zhao, ACS Appl. Energy Mater., 3, 2049 (2020). [DOI: https://doi.org/10.1021/acsaem.9b01475]   DOI
33 P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Appl. Phys. Lett., 96, 152105 (2010). [DOI: https://doi.org/10.1063/1.3396981]   DOI
34 Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, and Y. Pei, Nat. Commun., 8, 13828 (2017). [DOI: https://doi.org/10.1038/ncomms13828]   DOI
35 X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 10, 3373 (2010). [DOI: https://doi.org/10.1021/nl101156v]   DOI
36 V. Karthikeyan, S. L. Oo, J. U. Surjadi, X. Li, V. C. S. Theja, V. Kannan, S. C. Lau, Y. Lu, K. H. Lam, and V. A. L. Roy, ACS Appl. Mater. Interfaces, 13, 58701 (2021). [DOI: https://doi.org/10.1021/acsami.1c18194]   DOI
37 P. G. Klemens, Proc. Phys. Soc. A, 68, 1113, (1955). [DOI: https://doi.org/10.1088/0370-1298/68/12/303]   DOI
38 X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, and J. Shi, Adv. Energy Mater., 7, 1602582 (2017). [DOI: https://doi.org/10.1002/aenm.201602582]   DOI
39 H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett., 92, 202114 (2018). [DOI: https://doi.org/10.1063/1.2936277]   DOI
40 X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano Lett., 11, 556 (2011). [DOI: https://doi.org/10.1021/nl104138t]   DOI
41 X. Yang, J. Carrete, and Z. Wang, J. Appl. Phys., 118, 085701 (2015). [DOI: https://doi.org/10.1063/1.4928811]   DOI
42 G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett., 8, 4670 (2008). [DOI: https://doi.org/10.1021/nl8026795]   DOI
43 Y. Min, G. D. Moon, B. S. Kim, B. Lim, J. S. Kim, C. Y. Kang, and U. Jeong, J. Am. Chem. Soc., 134, 2872 (2012). [DOI: https://doi.org/10.1021/ja209991z]   DOI
44 Y. Min, J. Kwak, A. Soon, and U. Jeong, Acc. Chem. Res., 47, 2887 (2014). [DOI: https://doi.org/10.1021/ar500133w]   DOI
45 Y. Min, G. D. Moon, C. E. Kim, J. H. Lee, H. Yang, A. Soon, and U. Jeong, J. Mater. Chem. C, 2, 6222 (2014). [DOI: https://doi.org/10.1039/C4TC00586D]   DOI
46 K. T. Kim, T. S. Min, S. D. Kim, E. A. Choi, D. W. Kim, and S. Y. Kim, Nano Energy, 55, 486 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2018.10.069]   DOI
47 J. Chen, Q. Sun, D. Bao, T. Liu, W. D. Liu, C. Liu, J. Tang, D. Zhou, L. Yang, and Z. G. Chen, ACS Appl. Mater. Interfaces, 12, 51523 (2020). [DOI: https://doi.org/10.1021/acsami.0c15341]   DOI
48 Y. Min, E. Im, G. T. Hwang, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, W. H. Yoon, D. S. Park, D. C. Hyun, and G. D. Moon, Nano Res., 12, 1750 (2019). [DOI: https://doi.org/10.1007/s12274-019-2432-6]   DOI
49 Y. Min, M. Kim, G. T. Hwang, C. W. Ahn, J. J. Choi, B. D. Hahn, W. H. Yoon, G. D. Moon, C. S. Park, and C. H. Park, Nano Energy, 78, 105198 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.105198]   DOI
50 J. Y. Hwang, J. Kim, H.-S. Kim, S.-I. Kim, K. H. Lee, and S. W. Kim, Adv. Energy Mater., 8, 1800065 (2018). [DOI: https://doi.org/10.1002/aenm.201800065]   DOI
51 G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett., 103, 183904 (2013). [DOI: https://doi.org/10.1063/1.4827555]   DOI
52 J. Xin, H. Wu, X. Liu, T. Zhu, G. Yu, and X. Zhao, Nano Energy, 34, 428 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.03.012]   DOI
53 C. Hu, K. Xia, C. Fu, X. Zhao, and T. Zhu, Energy Environ. Sci., 15, 1406 (2022). [DOI: https://doi.org/10.1039/D1EE03802H]   DOI
54 K. Xia, C. Hu, C. Fu, X. Zhao, and T. Zhu, Appl. Phys. Lett., 118, 140503 (2021). [DOI: https://doi.org/10.1063/5.0043552]   DOI
55 F. Li, J. F. Li, L. D. Zhao, K. Xiang, Y. Liu, B. P. Zhang, Y. H. Lin, C. W. Nan, and H.-M. Zhu, Energy Environ. Sci., 5, 7188 (2012). [DOI: https://doi.org/10.1039/C2EE21274A]   DOI
56 H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M. G. Kanatzidis, and L.-D. Zhao, Energy Environ. Sci., 8, 3298 (2015). [DOI: https://doi.org/10.1039/C5EE02423D]   DOI
57 Y. Liu, Y. Zhou, J. Lan, C. Zeng, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C.-W. Nan, J. Alloys Compd., 662, 320 (2016). [DOI: https://doi.org/10.1016/j.jallcom.2015.12.087]   DOI
58 Q. He, S. Hu, X. Tang, Y. Lan, J. Yang, X. Wang, Z. Ren, Q. Hao, and G. Chen, Appl. Phys. Lett., 93, 042108 (2008). [DOI: https://doi.org/10.1063/1.2963476]   DOI
59 G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, and L. D. Zhao, J. Am. Chem. Soc., 138, 13647 (2016). [DOI: https://doi.org/10.1021/jacs.6b07010]   DOI
60 H. Lee, D. Vashaee, D. Z. Wang, M. S. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107, 094308 (2010). [DOI: https://doi.org/10.1063/1.3388076]   DOI