DOI QR코드

DOI QR Code

Defect Engineering for High-Performance Thermoelectric Semiconductors

결함제어를 통한 열전 반도체 연구 동향

  • Min, Yuho (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University)
  • 민유호 (경북대학교 신소재공학부 금속신소재공학전공)
  • Received : 2022.06.21
  • Accepted : 2022.06.27
  • Published : 2022.09.01

Abstract

Defects in solids play a vital role on thermoelectric properties through the direct impacts of electronic band structure and electron/phonon transports, which can improve the electronic and thermal properties of a given thermoelectric semiconductor. Defects in semiconductors can be divided into four different types depending on their geometric dimensions, and thus understanding the effects on thermoelectric properties of each type is of a vital importance. This paper reviews the recent advances in the various thermoelectric semiconductors through defect engineering focusing on the charge carrier and phonon behaviors. First, we clarify and summarize each type of defects in thermoelectric semiconductors. Then, we review the recent achievements in thermoelectric properties by applying defect engineering when introducing defects into semiconductor lattices. This paper ends with a brief discussion on the challenges and future directions of defect engineering in the thermoelectric field.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1F1A1064493).

References

  1. F. J. Disalvo, Science, 285, 703 (1999). [DOI: https://doi.org/10.1126/science.285.5428.703]
  2. F. R. Ovik, B. D. Long, M. C. Barma, M. Riaz, M. F. M. Sabri, S. M. Said, and R. Saidur, Renewable Sustainable Energy Rev., 64, 635 (2016). [DOI: https://doi.org/10.1016/j.rser.2016.06.035]
  3. Y. Zheng, T. J. Slade, L. Hu, X. Y. Tan, Y. Luo, Z. Z. Luo, J. Xu, Q. Yan, and M. G. Kanatzidis, Chem. Soc. Rev., 50, 9022 (2021). [DOI: https://doi.org/10.1039/d1cs00347j]
  4. Z. Li, C. Xiao, H. Zhu, and Y. Xie, J. Am. Chem. Soc., 138, 14810 (2016). [DOI: https://doi.org/10.1021/jacs.6b08748]
  5. Y. Min, J. W. Roh, H. Yang, M. Park, S. I. Kim, S. Hwang, S. M. Lee, K. H. Lee, and U. Jeong, Adv. Mater., 25, 1425 (2013). [DOI: https://doi.org/10.1002/adma.201203764]
  6. D. Ding, D. Wang, M. Zhao, J. Lv, H. Jiang, C. Lu, and Z. Tang, Adv. Mater., 29, 1603444 (2017). [DOI: https://doi.org/10.1002/adma.201603444]
  7. Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, Nat. Mater., 14, 1223 (2015). [DOI: https://doi.org/10.1038/nmat4430]
  8. J.-A. Dolyniuk, B. Owens-Baird, J. Wang, J. V. Zaikina, and K. Kovnir, Mater. Sci. Eng. R Rep., 108, 1 (2016). [DOI: https://doi.org/10.1016/j.mser.2016.08.001]
  9. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature, 473, 66 (2011). [DOI: https://doi.org/10.1038/nature09996]
  10. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B, 47, 12727 (1993). [DOI: https://doi.org/10.1103/physrevb.47.12727]
  11. E. Shapria, A. Holtzman, D. Marchak, and Y. Selzer, Nano Lett., 12, 808 (2012). [DOI: https://doi.org/10.1021/nl2038425]
  12. Y. Zhang and G. D. Stucky, Chem. Mater., 26, 837 (2014). [DOI: https://doi.org/10.1021/cm402150j]
  13. Y. Yu, C. Zhou, S. Zhang, M. Zhu, M. Wuttig, C. Scheu, D. Raabe, G. J. Synder, B. Gault, and O, Cojocaru-Miredin, Mater. Today, 32, 260 (2020). [DOI: https://doi.org/10.1016/j.mattod.2019.11.010]
  14. L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, and M. G. Kanatzidis, Science, 351, 141 (2015). [DOI: https://doi.org/10.1126/science.aad3749]
  15. D. Wu, L. Wu, D. He, L. D. Zhao, W. Li, M. Wu, M. Jin, J. Xu, J. Jiang, L. H. Y. Zhu, M. G. Kanatzidis, and J. He, Nano Energy, 35, 321 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.04.004]
  16. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Science, 348, 109 (2015). [DOI: https://doi.org/10.1126/science.aaa4166]
  17. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, Science, 320, 634 (2008). [DOI: https://doi.org/10.1126/science.1156446]
  18. R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M. Y. Chou, M. T. Agne, J. He, G. J. Snyder, X. Shi, and L. Chen, Energy Environ. Sci., 10, 1928 (2017). [DOI: https://doi.org/10.1039/C7EE01737E]
  19. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Chem., 3, 160 (2011). [DOI: https://doi.org/10.1038/nchem.955]
  20. H. Cho, S. Y. Back, J. H. Yun, S. Byon, H. Jin, and J. S. Rhyee, ACS Appl. Mater. Interfaces, 12, 38076 (2020). [DOI: https://doi.org/10.1021/acsami.0c09529]
  21. Q. Zhao, B. Qin, D. Wang, Y. Qiu, and L. D. Zhao, ACS Appl. Energy Mater., 3, 2049 (2020). [DOI: https://doi.org/10.1021/acsaem.9b01475]
  22. L. P. Hu, T. J. Zhu, Y. G. Wang, H. H. Xie, Z. J. Xu, and X. B. Zhao, NPG Asia Mater., 6, e88 (2014). [DOI: https://doi.org/10.1038/am.2013.86]
  23. P. Qiu, J. Yang, X. Huang, X. Chen, and L. Chen, Appl. Phys. Lett., 96, 152105 (2010). [DOI: https://doi.org/10.1063/1.3396981]
  24. Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, and Y. Pei, Nat. Commun., 8, 13828 (2017). [DOI: https://doi.org/10.1038/ncomms13828]
  25. Y. Min, M. Kim, G. T. Hwang, C. W. Ahn, J. J. Choi, B. D. Hahn, W. H. Yoon, G. D. Moon, C. S. Park, and C. H. Park, Nano Energy, 78, 105198 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.105198]
  26. J. Y. Hwang, J. Kim, H.-S. Kim, S.-I. Kim, K. H. Lee, and S. W. Kim, Adv. Energy Mater., 8, 1800065 (2018). [DOI: https://doi.org/10.1002/aenm.201800065]
  27. J. Xin, H. Wu, X. Liu, T. Zhu, G. Yu, and X. Zhao, Nano Energy, 34, 428 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.03.012]
  28. C. Hu, K. Xia, C. Fu, X. Zhao, and T. Zhu, Energy Environ. Sci., 15, 1406 (2022). [DOI: https://doi.org/10.1039/D1EE03802H]
  29. K. Xia, C. Hu, C. Fu, X. Zhao, and T. Zhu, Appl. Phys. Lett., 118, 140503 (2021). [DOI: https://doi.org/10.1063/5.0043552]
  30. G. Tan, Y. Zheng, and X. Tang, Appl. Phys. Lett., 103, 183904 (2013). [DOI: https://doi.org/10.1063/1.4827555]
  31. F. Li, J. F. Li, L. D. Zhao, K. Xiang, Y. Liu, B. P. Zhang, Y. H. Lin, C. W. Nan, and H.-M. Zhu, Energy Environ. Sci., 5, 7188 (2012). [DOI: https://doi.org/10.1039/C2EE21274A]
  32. G. Tang, W. Wei, J. Zhang, Y. Li, X. Wang, G. Xu, C. Chang, Z. Wang, Y. Du, and L. D. Zhao, J. Am. Chem. Soc., 138, 13647 (2016). [DOI: https://doi.org/10.1021/jacs.6b07010]
  33. H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M. G. Kanatzidis, and L.-D. Zhao, Energy Environ. Sci., 8, 3298 (2015). [DOI: https://doi.org/10.1039/C5EE02423D]
  34. Y. Liu, Y. Zhou, J. Lan, C. Zeng, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C.-W. Nan, J. Alloys Compd., 662, 320 (2016). [DOI: https://doi.org/10.1016/j.jallcom.2015.12.087]
  35. Q. He, S. Hu, X. Tang, Y. Lan, J. Yang, X. Wang, Z. Ren, Q. Hao, and G. Chen, Appl. Phys. Lett., 93, 042108 (2008). [DOI: https://doi.org/10.1063/1.2963476]
  36. H. Lee, D. Vashaee, D. Z. Wang, M. S. Dresselhaus, Z. F. Ren, and G. Chen, J. Appl. Phys., 107, 094308 (2010). [DOI: https://doi.org/10.1063/1.3388076]
  37. K. H. Lee, S. I. Kim, H. S. Kim, and S. W. Kim, ACS Appl. Energy Mater., 3, 2214 (2020). [DOI: https://doi.org/10.1021/acsaem.9b02131]
  38. J. Callaway and H. C. von Baeyer, Phys. Rev., 120, 1149 (1960). [DOI: https://doi.org/10.1103/PhysRev.120.1149]
  39. J. He, J. R. Sootsman, S. N. Girard, J. C. Zheng, J. Wen, Y. Zhu, M. G. Kanatzidis, and V. P. Dravid, J. Am. Chem. Soc., 132, 8669 (2010). [DOI: https://doi.org/10.1021/ja1010948]
  40. Y. Lee, S. H. Lo, C. Chen, H. Sun, D. Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Nat. Commn., 5, 3640 (2014). [DOI: https://doi.org/10.1038/ncomms4640]
  41. G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett., 80, 3551 (1998). [DOI: https://doi.org/10.1103/PhysRevLett.80.3551]
  42. K. H. Lee and S. W. Kim, J. Kor. Ceram. Soc., 54, 75 (2017). [DOI: https://doi.org/10.4191/kcers.2017.54.2.10]
  43. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Jurosaki, A. Charoenphakdee, S. Yananaka, and G. J. Snyder, Science, 321, 554 (2008). [DOI: https://doi.org/10.1126/science.1159725]
  44. C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, Phys. Rev. B, 80, 233201 (2009). [DOI: https://doi.org/10.1103/PhysRevB.80.233201]
  45. Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, and Z. Ren, Proc. Natl. Acad. Sci. U. S. A., 110, 13261 (2013). [DOI: https://doi.org/10.1073/pnas.1305735110]
  46. V. Karthikeyan, S. L. Oo, J. U. Surjadi, X. Li, V. C. S. Theja, V. Kannan, S. C. Lau, Y. Lu, K. H. Lam, and V. A. L. Roy, ACS Appl. Mater. Interfaces, 13, 58701 (2021). [DOI: https://doi.org/10.1021/acsami.1c18194]
  47. P. G. Klemens, Proc. Phys. Soc. A, 68, 1113, (1955). [DOI: https://doi.org/10.1088/0370-1298/68/12/303]
  48. X. Meng, Z. Liu, B. Cui, D. Qin, H. Geng, W. Cai, L. Fu, J. He, Z. Ren, and J. Shi, Adv. Energy Mater., 7, 1602582 (2017). [DOI: https://doi.org/10.1002/aenm.201602582]
  49. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett., 10, 3373 (2010). [DOI: https://doi.org/10.1021/nl101156v]
  50. H. Li, X. Tang, X. Su, and Q. Zhang, Appl. Phys. Lett., 92, 202114 (2018). [DOI: https://doi.org/10.1063/1.2936277]
  51. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano Lett., 11, 556 (2011). [DOI: https://doi.org/10.1021/nl104138t]
  52. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, Nano Lett., 8, 4670 (2008). [DOI: https://doi.org/10.1021/nl8026795]
  53. Y. Min, G. D. Moon, B. S. Kim, B. Lim, J. S. Kim, C. Y. Kang, and U. Jeong, J. Am. Chem. Soc., 134, 2872 (2012). [DOI: https://doi.org/10.1021/ja209991z]
  54. Y. Min, G. D. Moon, C. E. Kim, J. H. Lee, H. Yang, A. Soon, and U. Jeong, J. Mater. Chem. C, 2, 6222 (2014). [DOI: https://doi.org/10.1039/C4TC00586D]
  55. Y. Min, J. Kwak, A. Soon, and U. Jeong, Acc. Chem. Res., 47, 2887 (2014). [DOI: https://doi.org/10.1021/ar500133w]
  56. X. Yang, J. Carrete, and Z. Wang, J. Appl. Phys., 118, 085701 (2015). [DOI: https://doi.org/10.1063/1.4928811]
  57. Y. Min, E. Im, G. T. Hwang, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, W. H. Yoon, D. S. Park, D. C. Hyun, and G. D. Moon, Nano Res., 12, 1750 (2019). [DOI: https://doi.org/10.1007/s12274-019-2432-6]
  58. Y. Min, G. Park, B. Kim, A. Giri, J. Zeng, J. W. Roh, S. I. Kim, K. H. Lee, and U. Jeong, ACS Nano, 9, 6843 (2015). [DOI: https://doi.org/10.1021/nn507250r]
  59. K. T. Kim, T. S. Min, S. D. Kim, E. A. Choi, D. W. Kim, and S. Y. Kim, Nano Energy, 55, 486 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2018.10.069]
  60. J. Chen, Q. Sun, D. Bao, T. Liu, W. D. Liu, C. Liu, J. Tang, D. Zhou, L. Yang, and Z. G. Chen, ACS Appl. Mater. Interfaces, 12, 51523 (2020). [DOI: https://doi.org/10.1021/acsami.0c15341]