Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.1.56

Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition  

Lee, Seunghyeok (Electronic Materials Research Center, Korea Institute of Science and Technology)
Park, Tae Joo (Department of Materials Science and Chemical Engineering, Hanyang University)
Kim, Seong Keun (Electronic Materials Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of Powder Materials / v.29, no.1, 2022 , pp. 56-62 More about this Journal
Abstract
Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.
Keywords
Atomic layer deposition; Thermoelectric materials; Core-shell structure; Coating; Interface/surface modification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. He, A. Bahrami, X. Zhang, I. G. Martinez, S. Lehmann and K. Nielsch: Adv. Mater. Technol., (2021) 2100953.
2 S.-I. Kim, J. An, W.-J. Lee, S. H. Kwon, W. H. Nam, N. V. Du, J.-M. Oh, S.-M. Koo, J. Y. Cho and W. H. Shin: Nanomaterials, 10 (2020) 2270.   DOI
3 S. Li, M. Chu, W. Zhu, R. Wang, Q. Wang, F. Liu, M. Gu, Y. Xiao and F. Pan: Nanoscale, 12 (2020) 1580.   DOI
4 S. Li, Z. Huang, R. Wang, C. Wang, W. Zhao, N. Yang, F. Liu, J. Luo, Y. Xiao and F. Pan: J. Mater. Chem. A, 9 (2021) 11442.   DOI
5 S. Li, Y. Liu, F. Liu, D. He, J. He, J. Luo, Y. Xiao and F. Pan: Nano Energy, 49 (2018) 257.   DOI
6 S.-S. Lim, K.-C. Kim, H. Jeon, J.-Y. Kim, J.-Y. Kang, H.- H. Park, S.-H. Baek, J.-S. Kim and S. K. Kim: J. Eur. Ceram. Soc., 40 (2020) 3592.   DOI
7 L. D. Zhao, B.-P. Zhang, W. S. Liu, H. L. Zhang and J.-F. Li: J. Alloys Compd., 467 (2009) 91.   DOI
8 T. Hamachiyo, M. Ashida and K. Hasezaki: J. Electron. Mater., 38 (2009) 1048.   DOI
9 X. Ji, J. He, Z. Su, N. Gothard and T. M. Tritt: J. Appl. Phys., 104 (2008) 034907.   DOI
10 M. R.-Bravo, A. Moure, J. F. Fernandez and M. M.-Gonzalez: RSC Adv., 5 (2015) 41653.   DOI
11 B. M. Knez, K. Nielsch and L. Niinisto: Adv. Mater., 19 (2007) 3425.   DOI
12 C. Marichy, M. Bechelany and N. Pinna: Adv. Mater., 24 (2012) 1017.   DOI
13 S. Adhikari, S. Selvaraj and D .-H. Kim: Adv. Mater. Interfaces, 5 (2018) 1800581.   DOI
14 S. M. George: Chem. Rev., 110 (2010) 111.   DOI
15 M. J. Jung, Y. J. Yun, J. Byun and B. J. Choi: J. Korean Powder Metall. Inst., 28 (2021) 239.   DOI
16 Y. Zheng, G. Tan, Y. Luo, X. Su, Y. Yan and X. Tang: Materials, 10 (2017) 617.   DOI
17 J. P. Heremans, B. Wiendlocha and A. M. Chamoire: Energy Environ. Sci., 5 (2012) 5510.   DOI
18 K.-C. Kim, S.-S. Lim, S. H. Lee, J. Hong, D.-Y. Cho, A. Y. Mohamed, C. M. Koo, S.-H. Baek, J.-S. Kim and S. K. Kim: ACS Nano, 13 (2019) 7146.   DOI
19 H. R. Sun, X. P. Jia, P. Lv, L. Deng, X. Guo, Y. W. Zhang, B. Sun, B.W. Liu and H.G. Ma: RSC Adv., 5 (2015) 61324.   DOI
20 F. J. DiSalvo: Science, 285 (1999) 703.   DOI
21 W. Liu, X. Yan, G. Chen and Z. Ren: Nano Energy, 1 (2012) 42.   DOI
22 C. J. Vineis, A. Shakouri, A. Majumdar and M. G. Kanatzidis: Adv. Mater., 22 (2010) 3970.   DOI
23 S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim: Science, 348 (2015) 109.   DOI
24 Y. Lan, A. J. Minnich, G. Chen and Z. Ren: Adv. Funct. Mater., 20 (2010) 357.   DOI
25 G. Tan, L.-D. Zhao, F. Shi, J. W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V. P. Dravid, C. Uher and M. G. Kanatzidis: J. Am. Chem. Soc., 136 (2014) 7006.   DOI
26 M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D .Z. Wang, Z.F. Ren, J.-P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043.   DOI
27 G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105.   DOI
28 D.-K. Ko, Y. Kang and C. B. Murray: Nano Lett., 11 (2011), 2841.   DOI
29 Z. Liang, M. J. Boland, K. Butrouna, D. R. Strachan and K. R. Graham: J. Mater. Chem. A, 5 (2017) 15891.   DOI
30 W. H. Shin, J. W. Roh, B. Ryu, H. J. Chang, H. S. Kim, S. Lee, W. S. Seo and K. Ahn: ACS Appl. Mater. Interfaces, 10 (2018), 3689.   DOI
31 A. Soni, Y. Shen, M. Yin, Y. Zhao, L. Yu, X. Hu, Z. Dong, K. A. Khor, M. S. Dresselhaus and Q. Xiong: Nano Lett., 12 (2012) 4305.   DOI
32 J. Jiang, L. Chen, S. Bai, Q. Yao and Q. Wang: Mater. Sci. Eng., B, 117 (2005) 334.   DOI
33 Y. Zhang, S. Li, F. Liu, C. Zhang, L. Hu, W. Ao, Y. Li, J. Li, H. Xie, Y. Xiao and F. Pan: J. Mater. Chem. A, 7 (2019) 26053.   DOI
34 S. R. Popuri, M. Pollet, R. Decourt, F. D. Morrison, N. S. Bennett and J. W. G. Bos: J. Mater. Chem. C, 4 (2016) 1685.   DOI
35 C. Fu, T. Zhu, Y. Liu, H. Xie and X. Zhao: Energy Environ. Sci., 8 (2015) 216.   DOI
36 Y. Pei, H. Wang and G. J. Snyder: Adv. Mater., 24 (2012) 6125.   DOI
37 L. Hu, T. Zhu, X. Liu and X. Zhao: Adv. Funct. Mater., 24 (2014) 5211.   DOI
38 J. Li, S. Zhang, F. Jia, S. Zheng, X. Shi, D. Jiang, S. Wang, G. Lu, L. Wu and Z.-G. Chen: Mater. Today Phys., 15 (2020) 100269.   DOI
39 A. Pakdel, Q. Guo, V. Nicolosi and T. Mori: J. Mater. Chem. A, 6 (2018) 21341.   DOI
40 Z. Jian, Z. Chen, W. Li, J. Yang, W. Zhang and Y. Pei: J. Mater. Chem. C, 3 (2015) 12410.   DOI
41 M. Ritala and J. Niinisto: ECS Transactions, 25 (2009) 641.   DOI
42 H. Wang, G. Luo, C. Tan, C. Xiong, Z. Guo, Y. Yin, B. Yu, Y. Xiao, H. Hu, G. Liu, X. Tan, J. G. Noudem and J. Jiang: ACS Appl. Mater. Interfaces, 12 (2020) 31612.   DOI
43 J. S. Yoon, J. M. Song, J. U. Rahman, S. Lee, W. S. Seo, K. H. Lee, S. Kim, H.-S. Kim, S. Kim and W. H. Shin: Acta Mater., 158 (2018) 289.   DOI
44 S.-S. Lim, K.-C. Kim, S. Lee, H.-H. Park, S.-H. Baek, J.- S. Kim and S. K. Kim: Coatings, 10 (2020) 572.   DOI
45 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vahaee, Z. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634.   DOI
46 W. Kim, J. Zide, A. Gossard, D. Klenov and S. Stemmer: Phys. Rev. Lett., 96 (2006) 0459012.
47 R. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis and X. Tang: Energy Environ. Sci., 11 (2018) 1520.   DOI
48 S. V. Faleev and F. Leonard: Phys. Rev. B, 77 (2008) 214304.   DOI
49 W. Zheng, Y. Luo, Y. Liu, J. Shi, R. Xiong and Z. Wang: J. Phys. Chem. Lett., 10 (2019) 4903.   DOI
50 A. Schmitz, C. Schmid, J. D. Boor and E. Muller: J. Nanosci. Nanotechnol., 17 (2017) 1547.   DOI