• Title/Summary/Keyword: thermally grown oxide

Search Result 81, Processing Time 0.039 seconds

Evaluation on the Delamination Life of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 박리수명 평가에 관한 연구)

  • Kim, Dae-Jin;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung;Kim, Moon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.162-168
    • /
    • 2009
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. The aging conditions that delamination occurs were determined by the extensive microscopic analyses and bond tests for each aging condition. The delamination map was drawn from the time-temperature matrix form which summarize the delamination conditions. Finally, a method to draw the delamination life diagram of a thermal barrier coating system by using the delamination map was suggested.

Morphological Change of the Surface Groove on a Heat Resistant Alloy Due to Thermal and Thermo-Mechanical Cycling (열 및 열-기계적 피로에 의한 내열합금 표면의 홈의 형상변화)

  • Li, Feng-Xun;Sun, Shin-Kyu;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.11-16
    • /
    • 2007
  • The existence of grooves on the surface of bond coat has significant effect on the instability of thermal barrier system. In this work, the thermal-mechanical fatigue experiments were performed under various thermal and mechanical loads for FeCralloy specimens with and without yttrium dopant to observe the deformation of surface grooves. The effect of temperature, fatigue load and the ratio of curvature on the deformation of grooves were investigated. As the results, it has been found that the higher load level and the higher curvature ratio induces the larger deformation near the grooves. However, the addition of yittrium dopant induces the adverse results.

  • PDF

The Study on the Interface State Density of $N_{2}Plasma$ Treated Oxide by the Conductance Technique (Conductance 법에 의한 $N_{2}Plasma$ 처리한 산화막의 계면상태 밀도에 관한 연구)

  • Sung, Yung-Kwon;Lee, Nae-In;Rhie, Seung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.189-192
    • /
    • 1988
  • Nitrided oxides have been investigated recently for application as a replacement for thermally grown $SiO_2$ in MIS devices. In this paper, thin oxides were nitrided in $N_2$ Plasma ambient. With the measurement of the equivalent paralled conductance and capacitance by the using coductance technique, the characterization of Si-SiON interface is developed. The interface state density of Si-SiON is obtained by $1{\times}10^{11}{\sim}9{\times}10^{11}(eV^{-1}Cm^{-2})$. After${\pm}$B-T stress is performed on the sample, the interface state density gets increased.

  • PDF

A study on the plasma treatment effect of passivasion film and the photoconductance (passivasion 막의 Plasma 처리효과와 광전도)

  • Yi, Seung-Hwan;Kim, Jae-Ho;Hong, Hyung-Ki;Sung, Yung-Kwon
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.383-385
    • /
    • 1989
  • Nitrided oxides have been recently investigated for the application as a replacement of thermally grown $SiO_2$in the MIS devices. In this paper, thin oxides were nitrided in the $N_2$plasma ambient. After B - T stress is performed on the sample, it was noticed that the current density is increased. From the I - V measurement, dominant conduction mechanism of oxynitride films appeared to be Fowler - Nordheim emission. And also its breakdown strength is increased about 2.2 MV/cm compared with the oxide films.

  • PDF

Acute Angle Etching of silicon Dioxide Layer (이산화실리콘 층의 예각부식)

  • 최연익
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.84-91
    • /
    • 1985
  • Acute angle etching Process of thermally grown silicon dioxide layer has been Proposed by depositing a thin layer of silicafilm on the thermal oxide layer. As densification temper-ature of silicafilm is varied from 175$^{\circ}C$ to 1,15$0^{\circ}C$, taper angles from 3$^{\circ}$ to 40$^{\circ}$ are ob-tained. Analytical model of the acute angle etching process has also been presented and etched profile equations of the silicon dioxide layer have been derived using format's principle of lease time. Etched profiles obtained from scanning electron microscope analysis show good agreement with the theoretically calculated profiles.

  • PDF

Evaluation on the Delamination Life of Isothermally Aged Plasma Sprayed Thermal Barrier Coating (플라즈마 용사 열차폐 코팅의 박리수명 평가에 관한 연구)

  • Kim, Dae-Jin;Shin, In-Hwan;Koo, Jae-Mean;Seok, Chang-Sung;Kim, Mun-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.216-221
    • /
    • 2008
  • In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. The aging conditions that determination occurs were determined by the extensive microscopic analyses and bond tests for each aging condition. The delamination map was drawn from the time-temperature matrix form which summarize the delamination conditions. Finally, a method to draw the delamination life diagram of a thermal barrier coating system by using the delamination map was suggested

  • PDF

Fabrication of 6H-SiC MOSFET and Digital IC (6H-SiC MOSFET과 디지털 IC 제작)

  • 김영석;오충완;최재승;송지헌;이장희;이형규;박근형
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.584-592
    • /
    • 2003
  • 6H-SiC MOSFETs and digital ICs have been fabricated and characterized. PMOS devices are fabricated on an n-type epilayer while the NMOS devices are fabricated on implanted p-wells. NMOS and PMOS devices use a thermally grown gate oxide. SiC MOSFETs are fabricated using different impurity activation methods such as high temperature and newly proposed laser annealing methods. Several digital circuits, such as resistive road NMOS inverters, CMOS inverters, resistive road NMOS NANDs and NORs are fabricated and characterized.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

A New Method for Measuring Residual Stress in Micro and Nano Films (마이크로 및 나노 박막의 잔류응력을 측정하기위한 새로운 방법)

  • Kang, Ki-Ju;Evans, Anthony G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.438-444
    • /
    • 2003
  • A new method to measure residual stress in micron and nano scale films is described. In the theory it is based on Linear Elastic Fracture Mechanics. And in the techniques it depends on the combined capability of the focused ion beam (FIB) imaging system and of high-resolution digital image correlation (DIC) software. The method can be used for any film material (whether amorphous or crystalline) without thinning the substrate. In the method, a region of the film surface is highlighted and scanning electron images of that region taken before and after a long slot, depth a, is introduced using the FIB. The DIC software evaluates the displacement of the surface normal to the slot due to the stress relaxation by using features on the film surface. To minimize the influence of signal noise and rigid body movement, not a few, but all of the measure displacements are used for determining the real residual stress. The accuracy of the method has been assessed by performing measurements on a nano film of diamond like carbon (DLC) on glass substrate and on micro film of aluminum oxide thermally grown on Fecrally substrate. It is shown that the new method determines the residual stress ${\sigma}_R=-1.73$ GPa for DLC and ${\sigma}_R=-5.45$ GPa for the aluminum oxide, which agree quite well with ones measured independently.

  • PDF

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.