• Title/Summary/Keyword: thermal evaporation

Search Result 779, Processing Time 0.033 seconds

The Mechanism of Gold Deposition by Thermal Evaporation

  • Mark C. Barnes;Kim, Doh-Y.;Nong M. Hwang
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.127-142
    • /
    • 2000
  • The charged cluster model states that chemical vapor deposition (CVD) begins with gas phase nucleation of charged clusters followed by cluster deposition on a substrate surface to form a thin film. A two-chambered CVD system, separated by a 1-mm orifice, was used to study gold deposition by thermal evaporation in order to determine if the CCM applies in this case. At a filament temperature of 1523 and 1773 K, the presence of nano-meter sized gold clusters was found to be positive and the cluster size and size distribution increased with increasing temperature. Small clusters were found to be amorphous and they combined with clusters already deposited on a substrate surface to form larger amorphous clusters on the surface. This work revealed that gold thin films deposited on a mica surface are the result of the sticking of 4-10 nm clusters. The topography of these films was similar to those reported previously under similar conditions.

  • PDF

Effect of enzyme treatment on the DSC and TGA behavior of silkworm powder

  • Jo, You-Young;Bae, Sung Min;Kim, HyunBok;Lee, Kwang Gill;Kweon, HaeYong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.29-32
    • /
    • 2018
  • Silkworm powder's thermal property is an important factor for its storage and marketing. This study examined the effect of edible enzyme on the thermal property of silkworm powder using Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). Results of the TGA showed that regardless of the enzyme treatment, the weight loss patterns of silkworm powders exhibited 3 step thermal property deterioration at approximately $80^{\circ}C$, $280^{\circ}C$, and $480^{\circ}C$ due to water evaporation and thermal degradation. This is similar with the DSC which also resulted in all samples two endothermic peaks attributed also to water evaporation and thermal degradation. These results indicated that the use of enzyme such as protease and cellulase might not affect significantly the thermal properties of silkworm powder.

Construction of AC calorimeter and measurement of thermal diffusivity of glass substrate coated by ZnS optical thin films (교류열량계 제작 및 ZnS 광학박막이 증착된 유리기판의 열확산도 측정)

  • 김석원;김형근;박병록;한성홍;성대진
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 1996
  • For the investigation of the influence of microstructure of optical thin films on the in-plane thermal diffusivity of glass substrate coated by that films, we constructed the AC calorimeter which uses argon-ion laser as a thermal source and measured several kinds of ZnS optical thin films which prepared by the changing of thermal evaporation speed such as 5$\AA$/s, 10$\AA$/s, 20$\AA$/s, 40$\AA$/s, 60$\AA$/s. The result showed that the thermal diffusivity decreases as the temperature increases. Also, when the evaporation speed is 20$\AA$/s, the thermal diffusivity has maximum value, and the variation of the thermal diffusivities are 27% at maximum.

  • PDF

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Morphological Change and Luminescence Properties of ZnO Crystals Synthesized by Thermal Evaporation of a Mixture of Zn and Cu Powder (Zn과 Cu 혼합 분말의 열 증발에 의하여 생성된 ZnO 결정의 형상 변화 및 발광 특성)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.578-582
    • /
    • 2018
  • ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at $1,000^{\circ}C$, while tetrapod-shaped ZnO crystals begin to form at $1,100^{\circ}C$. The wire-shaped ZnO crystals form even at $1,000^{\circ}C$, indicating that Cu acts as a reducing agent. As the temperature increases to $1,200^{\circ}C$, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from $1,000^{\circ}C$ to $1,200^{\circ}C$. For the ZnO crystals synthesized at $1,000^{\circ}C$, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at $1,100^{\circ}C$. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at $1,200^{\circ}C$.

YBCO - film production by thermal co-evaporation for microwave and electrical power applications

  • Prusseit, W.;Semerad, R.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.145-145
    • /
    • 2000
  • Large area YBCO - films are series produced by thermal co-evaporation using a deposition scheme known as Garching process, which allows intermittent oxygen supply in a high vacuum ambient by an oxygen cup spaced closely underneath the moving substrates. The deposition area of 9" diameter is capable to handle very large wafers up to 8" diam. or numerous smaller wafers. The large distance between substrates and boat sources and an elaborate heater design guarantee excellent film uniformity over the entire deposition area. YBCO - films deposited by this technique are commercially fabricated for a variety of applications - the most prominent are resistive fault current limiters and microwave filters for mobile or satellite communications. IMUX and OMUX - filters are currently space qualined by Robert Bosch GmbH and are expected to be launched and installed on an experimental platform of the international space station ALPHA in 2001. Both of the above applications require quite different film specifications on the one hand, but at the same time extremely high uniformity and reproducibility on the other hand, since hundreds of YBCO - films are combined to large systems or have to be approved for manned space missions. The success of such projects is direct evidence that the technique of thermal evaporation is readily capable to meet these high demands and has become the major deposition technique to support the emerging HTS market.

  • PDF

NO gas-sensing properties of In2O3 nanobelt films prepared by thermal evaporation (진공증착법으로 제조한 In2O3 나노벨트막의 NO가스감지특성)

  • Choi, Mu-Hee;Ma, Tae-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.406-410
    • /
    • 2006
  • The films of indium oxide $In_{2}O_{3}$) were deposited onto $SiO_{2}$ coated Si wafers by a thermal evaporation method. Substrate temperature was varied from $25^{\circ}C$ to $300^{\circ}C$. Deposition rate increased to $250^{\circ}C$ and then decreased rapidly. The crystallographic properties and surface morphologies of the films were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The films deposited at $250^{\circ}C$ were found to have a nanobelt structure. Resistor-type gas-sensors were fabricated with $In_{2}O_{3}$ films using Pt as electrodes. The resistance variation of $In_{2}O_{3}$ films with the concentration of NO gas was measured. The $In_{2}O_{3}$ films deposited at $250^{\circ}C$ showed the highest sensitivity to the NO gas.

Effect of Synthetic Temperature and Time on the Morphology of ZnO Crystals Fabricated by Thermal Evaporation of Al-Zn Mixture (Al-Zn 혼합물의 열 증발을 이용한 ZnO 결정의 합성에서 결정의 형상에 미치는 합성 온도와 시간의 영향)

  • Kim, Min-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.265-268
    • /
    • 2015
  • ZnO micro/nanocrystals at large scale were synthesized through the thermal evaporation of Al-Zn mixtures under air atmosphere. The effect of synthetic temperature and time on the morphology of the micro/nanocrystals was examined. It was found that the temperature and time affected the morphology of the ZnO crystals. At temperatures below $900^{\circ}C$, no crystals were synthesized. At a temperature of $1000^{\circ}C$, ZnO crystals with a rod shape were synthesized. With an increase in temperature from $1000^{\circ}C$ to $1100^{\circ}C$, the morphology of the crystals changed from rod shape to wire and granular shapes. As the time increased from 2 h to 3 h at $1000^{\circ}C$, tetrapod-shaped ZnO crystals started to form. XRD patterns showed that the ZnO crystals had a hexagonal wurtzite structure. EDX analysis revealed that the ZnO crystals had high purity. It is believed that the ZnO nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the micro/nanocrystals in the SEM images.

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent (Mg를 환원제로 사용하여 열증발법으로 합성한 SnO2 나노결정 및 발광 특성)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.338-342
    • /
    • 2020
  • Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.

ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent (Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.432-436
    • /
    • 2019
  • Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.