Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.10.578

Morphological Change and Luminescence Properties of ZnO Crystals Synthesized by Thermal Evaporation of a Mixture of Zn and Cu Powder  

Lee, Geun-Hyoung (Electrical & Electronic Materials Engineering Major, Division of Advanced Materials Engineering, Dong-eui University)
Publication Information
Korean Journal of Materials Research / v.28, no.10, 2018 , pp. 578-582 More about this Journal
Abstract
ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at $1,000^{\circ}C$, while tetrapod-shaped ZnO crystals begin to form at $1,100^{\circ}C$. The wire-shaped ZnO crystals form even at $1,000^{\circ}C$, indicating that Cu acts as a reducing agent. As the temperature increases to $1,200^{\circ}C$, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from $1,000^{\circ}C$ to $1,200^{\circ}C$. For the ZnO crystals synthesized at $1,000^{\circ}C$, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at $1,100^{\circ}C$. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at $1,200^{\circ}C$.
Keywords
zinc oxide crystals; mixture of Zn and Cu; thermal evaporation; morphology change;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001).   DOI
2 J. Johnson, H. Yan, P. Yang and R. Saykally, J. Phys. Chem. B, 107, 8816 (2003).   DOI
3 J. W. Kim, D. H. Kim, T. H. Ki, J. H. Park and J. M. Myoung, Korean J. Mater. Res., 27, 658 (2017).   DOI
4 S. H. Hwang, K. J. Moon, T. I. Lee and J. M. Myoung, Korean J. Mater. Res., 23, 255 (2013).   DOI
5 N. R. Kim, J. S. Kim, D. J. Byun, D. H. Rho and J. W. Yang, Korean J. Mater. Res., 13, 668 (2003).   DOI
6 W. Thongsuksai, G. Panomsuwan and A. Rodchanarowan, Mater. Lett., 224, 50 (2018).   DOI
7 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).   DOI
8 E. I. Givargizov, J. Cryst. Growth, 31, 20 (1975).   DOI
9 G. H. Lee, Appl. Surf. Sci., 259, 562 (2012).   DOI
10 Y. Dai, Y. Zhang and Z. L. Wang, Solid State Commun., 126, 629 (2003).   DOI
11 M. Biswas and E. McGlynn and M. O. Henry, Microelectron. J., 40, 259 (2009).   DOI
12 X. Wang, J. Song and Z. L. Wang, Chem. Phys. Lett., 424, 86 (2006).   DOI
13 S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett., 363, 134 (2002).   DOI