DOI QR코드

DOI QR Code

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent

Mg를 환원제로 사용하여 열증발법으로 합성한 SnO2 나노결정 및 발광 특성

  • So, Ho-Jin (Department of Advanced Materials Engineering, Graduate School, Dong-eui University) ;
  • Lee, Geun-Hyoung (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
  • 소호진 (동의대학교 대학원 신소재공학과) ;
  • 이근형 (동의대학교 대학원 신소재공학과)
  • Received : 2020.05.18
  • Accepted : 2020.06.18
  • Published : 2020.07.27

Abstract

Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.

Keywords

References

  1. H. Kim, D. S. Yang, J. H. Um, M. Balasubramanian, J. Yoo, H. Kim, S. B. Park, J. M. Kim and W. S. Yoon, J. Power Sources, 413, 241 (2019). https://doi.org/10.1016/j.jpowsour.2018.12.035
  2. J. H. Kim, Y. Zheng, M. Ali and S. S. Kim, Korean J. Mater. Res., 26, 741 (2016). https://doi.org/10.3740/MRSK.2016.26.12.741
  3. G. Marimuthu, K. Saravankumar, K. Jeyadheepan, P. M. Razad, M. Jithin, V. R. Sreelakshmi and K. Mahalakshmi, Superlattices Microstruct., 128, 181 (2019). https://doi.org/10.1016/j.spmi.2019.01.032
  4. A. B. Bhise, D. J. Late, N. S. Ramgir, M. A. More, I. S. Mulla, V. K. Pillai and D. S. Joag, Thin Solid Films, 516, 6388 (2008). https://doi.org/10.1016/j.tsf.2007.12.160
  5. M. A. Gondal, Q. A. Drmosh and T. A. Saleh, Appl. Surf. Sci., 256, 7067 (2010). https://doi.org/10.1016/j.apsusc.2010.05.027
  6. H. J. Kim, J. H. Son and D. S. Bae, Korean J. Mater. Res., 21, 415 (2011). https://doi.org/10.3740/MRSK.2011.21.8.415
  7. S. Park, C. Hong, J. Kang, N. Cho and C. Lee, Curr. Appl. Phys., 9, s230 (2009). https://doi.org/10.1016/j.cap.2009.01.049
  8. W. Jeong and H. C. Kang, Ceram. Int., 44, 9801 (2018). https://doi.org/10.1016/j.ceramint.2018.02.217
  9. L. D. Khanh, N. T. Binh, L. T. T. Binh, N. N. Long, D. H. Chi, K. Higashimine and T. Mitani, J. Korean Phys. Soc., 52, 1689 (2008). https://doi.org/10.3938/jkps.52.1689
  10. N. Bhardwaj, S. Kuriakose and S. Mohapatra, J. Alloys Compd., 592, 238 (2014). https://doi.org/10.1016/j.jallcom.2013.12.268
  11. S. Budak, G. X. Miao, M. Ozdemir, K. B. Chetry and A. Gupta, J. Cryst. Growth, 291, 405 (2006). https://doi.org/10.1016/j.jcrysgro.2006.03.045
  12. G. H. Lee, Ceram. Int., 41, 12058 (2015). https://doi.org/10.1016/j.ceramint.2015.06.021
  13. Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003). https://doi.org/10.1002/adfm.200390013
  14. J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang and Y. Du, J. Am. Chem. Soc., 127, 6180 (2005). https://doi.org/10.1021/ja042748d
  15. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964). https://doi.org/10.1063/1.1753975
  16. Y. J. Hsu and S. Y. Lu, J. Phys. Chem. B, 109, 4398 (2005). https://doi.org/10.1021/jp046354k
  17. S. H. Nam and J. H. Boo, J. Nanosci. Nanotechnol., 12, 1559 (2012). https://doi.org/10.1166/jnn.2012.4650
  18. R. R. Kumar, M. Parmar, K. N. Rao, K. Rajanna and A. R. Phani, Scr. Mater., 68, 408 (2013). https://doi.org/10.1016/j.scriptamat.2012.11.002
  19. M. O. Orlandi, Tin Oxide Materials, 1st ed., p.88, Elsevier, Oxford, United Kingdom (2019).