Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.7.338

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent  

So, Ho-Jin (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
Lee, Geun-Hyoung (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
Publication Information
Korean Journal of Materials Research / v.30, no.7, 2020 , pp. 338-342 More about this Journal
Abstract
Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.
Keywords
tin oxide nanocrystals; magnesium powder; thermal evaporation; reducing agent;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Kim, D. S. Yang, J. H. Um, M. Balasubramanian, J. Yoo, H. Kim, S. B. Park, J. M. Kim and W. S. Yoon, J. Power Sources, 413, 241 (2019).   DOI
2 J. H. Kim, Y. Zheng, M. Ali and S. S. Kim, Korean J. Mater. Res., 26, 741 (2016).   DOI
3 G. Marimuthu, K. Saravankumar, K. Jeyadheepan, P. M. Razad, M. Jithin, V. R. Sreelakshmi and K. Mahalakshmi, Superlattices Microstruct., 128, 181 (2019).   DOI
4 A. B. Bhise, D. J. Late, N. S. Ramgir, M. A. More, I. S. Mulla, V. K. Pillai and D. S. Joag, Thin Solid Films, 516, 6388 (2008).   DOI
5 M. A. Gondal, Q. A. Drmosh and T. A. Saleh, Appl. Surf. Sci., 256, 7067 (2010).   DOI
6 H. J. Kim, J. H. Son and D. S. Bae, Korean J. Mater. Res., 21, 415 (2011).   DOI
7 S. Park, C. Hong, J. Kang, N. Cho and C. Lee, Curr. Appl. Phys., 9, s230 (2009).   DOI
8 W. Jeong and H. C. Kang, Ceram. Int., 44, 9801 (2018).   DOI
9 L. D. Khanh, N. T. Binh, L. T. T. Binh, N. N. Long, D. H. Chi, K. Higashimine and T. Mitani, J. Korean Phys. Soc., 52, 1689 (2008).   DOI
10 N. Bhardwaj, S. Kuriakose and S. Mohapatra, J. Alloys Compd., 592, 238 (2014).   DOI
11 S. Budak, G. X. Miao, M. Ozdemir, K. B. Chetry and A. Gupta, J. Cryst. Growth, 291, 405 (2006).   DOI
12 G. H. Lee, Ceram. Int., 41, 12058 (2015).   DOI
13 Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003).   DOI
14 J. Duan, S. Yang, H. Liu, J. Gong, H. Huang, X. Zhao, R. Zhang and Y. Du, J. Am. Chem. Soc., 127, 6180 (2005).   DOI
15 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).   DOI
16 Y. J. Hsu and S. Y. Lu, J. Phys. Chem. B, 109, 4398 (2005).   DOI
17 S. H. Nam and J. H. Boo, J. Nanosci. Nanotechnol., 12, 1559 (2012).   DOI
18 M. O. Orlandi, Tin Oxide Materials, 1st ed., p.88, Elsevier, Oxford, United Kingdom (2019).
19 R. R. Kumar, M. Parmar, K. N. Rao, K. Rajanna and A. R. Phani, Scr. Mater., 68, 408 (2013).   DOI