Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.7.432

ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent  

So, Ho-Jin (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
Lee, Geun-Hyoung (Department of Advanced Materials Engineering, Graduate School, Dong-eui University)
Publication Information
Korean Journal of Materials Research / v.29, no.7, 2019 , pp. 432-436 More about this Journal
Abstract
Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.
Keywords
zinc oxide crystals; manganese powder; thermal evaporation; reducing agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.-J. Choi, Adv. Funct. Mater., 12, 323 (2002).   DOI
2 A. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang and W. Lee, Appl. Phys. Lett., 92, 092113 (2008).   DOI
3 J. L. Yang, S. J. An, W. I. Park, G.-C. Yi and W. Choi, Adv. Mater., 16, 1661 (2004).   DOI
4 J. S. Na, B. Gong, G. Scarel and G.N. Parsons, ACS Nano, 3, 3191 (2009).   DOI
5 J. Lee, A.J. Easteal, U. Pal and D. Bhattacharyya, Curr. Appl. Phys., 9, 792 (2009).   DOI
6 B. N. Illy, B. Ingham and M. P. Ryan, Cryst. Growth Des., 10, 1189 (2010).   DOI
7 D. Calestani, M. Z. Zha, L. Zanotti, M. Villani and A. Zappettini, Cryst. Eng. Comm., 13, 1707 (2011).   DOI
8 A. Johari, V. Rana and M. C. Bhatnagar, Nanomater. Nanotechnol., 1, 49 (2011).
9 C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett., 85, 3878 (2004).   DOI
10 B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002).   DOI
11 M. Biswas, E. McGlynn, M. O. Henry, M. McCann and A. Rafferty, J. Appl. Phys., 105, 094306 (2009).   DOI
12 H. Lv, D. D. Sang, H. D. Li, X. B. Du, D. M. Li and G. T. Zou, Nanoscale Res. Lett., 5, 620 (2010).   DOI
13 Y. Zhang, M. K. Ram, E. K. Stefanakos and D. Y. Goswami, J. Nanomater., 2012, 624520 (2012).
14 D. S. Kim, U. Gosele and M. Zacharias, J. Cryst. Growth, 311, 3216 (2009).   DOI
15 U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morloc, J. Appl. Phys., 98, 041301 (2005).   DOI
16 D. F. Wang and T. J. Zhang, Solid State Commun., 149, 1947 (2009).   DOI
17 A. B. Djurisic, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. F. Lui and C. Surya, Adv. Funct. Mater., 14, 856 (2004).   DOI
18 X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, Appl. Phys. Lett., 78, 2285 (2001).   DOI