• Title/Summary/Keyword: thermal conductivity $R_{th}$

Search Result 12, Processing Time 0.02 seconds

Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470 (ASTM D5470 방법으로 연강과 스테인리스강의 열전도도 측정시 열그리스의 영향)

  • Cho, Young-Wook;Hahn, Byung-Dong;Lee, Ju Ho;Park, Sung Hyuk;Baeg, Ju-Hwan;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.443-450
    • /
    • 2019
  • Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance($R_{th}$) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.

Effects of some factors on the thermal-dissipation characteristics of high-power LED packages

  • Ji, Peng Fei;Moon, Cheol-Hee
    • Journal of Information Display
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Decreasing the thermal resistance is the critical issue for high-brightness light-emitting diodes. In this paper, the effects of some design factors, such as chip size (24 and 35 mil), substrate material (AlN and high-temperature co-fired ceramic), and die-attach material (Ag epoxy and PbSn solder), on the thermal-dissipation characteristics were investigated. Using the thermal transient method, the temperature sensitivity parameter, $R_{th}$ (thermal resistance), and junction temperature were estimated. The 35-mil chip showed better thermal dissipation, leading to lower thermal resistance and lower junction temperature, owing to its smaller heat source density compared with that of the 24-mil chip. By adopting an AlN substrate and a PbSn solder, which have higher thermal conductivity, the thermal resistance of the 24-mil chip can be decreased and can be made the same as that of the 35-mil chip.

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution (PVA-AAc 용액을 사용한 메조페이스 핏치기반 그라파이트 폼의 제조 및 특성)

  • Kim, Ji-Hyun;Lee, Sangmin;Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.706-713
    • /
    • 2015
  • Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.

Effect of Cross-linking Treatment of Lyocell Fabric on Carbon Fabric Properties (리오셀 섬유의 가교 처리가 탄소 직물 특성에 미치는 영향)

  • Lee, Su-Oh;Park, Gil-Young;Kim, Woo-Sung;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.21-27
    • /
    • 2019
  • Cellulose-based carbon fabrics are used in aerospace nozzles have low thermal conductivity and high ablation resistance. However, there is a disadvantage in that the weight is reduced by 70~90% in the pyrolysis process and graphitization process and the residual rate is low when the final carbon fabric is produced. In this study, phosphoric acid as a phosphorus flame retardant and Citric acid as a cross-linking agent were treated on the lyocell fabrics. After that the functional groups were identified and thermal properties were confirmed by FT-IR, XRD and TGA. The yields of the final carbon fabrics were also compared through the pyrolysis and graphitization process. The graphitized yield increased to 8.1% with increasing citric acid to 16 wt% added.

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

Synthesis and Characterization of Homo Binuclear Macrocyclic Complexes of UO2(VI), Th(IV), ZrO(IV) and VO(IV) with Schiff-Bases Derived from Ethylene diamine/Orthophenylene Diamine, Benzilmonohydrazone and Acetyl Acetone

  • Mohapatra, R.K.;Ghosh, S.;Naik, P.;Mishra, S.K.;Mahapatra, A.;Dash, D.C.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • A series of homo binuclear complexs of the type $[M_2(L/L^')(NO_3)n].mH_2O$, [where $M=U{O_2}^{2+},\;Th^{4+},\;ZrO^{2+}$] and $[(VO)_2(L/L^')(SO_4)_2]{\cdot}2H_2O$, L=1,5,6,9,12,15,16,20 octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (OTTDO) or L'=10:11;21:22-dibenzo-1,5,6,9,12,15,16,20-octaaza-7,813,14-tetraphenyl-2,4,17,19-tetramethyl-1,4,6,8,12,14,16,19-docosaoctene (DOTTOT), n=4 for $U{O_2}^{2+}$, $ZrO^{2+}$ n=8 for $Th^{4+}$ m=1,2,3 respectively, have been synthesized in template method from ethylenediamine/orthophenylene diamine, benzil monohydrazone and acetyl acetone and characterized on the basis of elemental analysis, thermal analysis, molar conductivity, magnetic moment, electronic, infrared, $^1H$-NMR studies. The results indicate that the VO(IV) ion is penta co-ordinated yielding paramagnetic complexes; $UO_2(VI)$, ZrO(IV) ions are hexa co-ordinated where as Th(IV) ion is octa co-ordinated yielding diamagnetic complexes of above composition. The fungi toxicity of the ZrO(IV) and VO(IV) complexes against some fungal pathogen has been studied.

Development of Large Propulsion Motor Bearings Considering Slope Conditions (경사조건을 고려한 대용량 추진 전동기용 베어링 개발에 대한 연구)

  • Oh, Seung Tae;Choi, Jin Woo;Kang, Byeng Hi;Kim, Jin;Choi, Seong Pil;Bin, Jae Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.241-248
    • /
    • 2013
  • In this study, bearings were developed for a high-power propulsion motor operating in inclined operation conditions through a simulation and similitude-experimental methods using commercial rotating machinery dynamics analysis software. The developed journal bearing is electrically insulated and has low thermal conductivity because each part is connected with 2-4 -mm-thick epoxy plates. To realize an appropriate oil thickness, an oil lift system is adopted, and a half separated structure is applied to ensure the feasibility of maintaining very heavy components. This study discusses some of the key design aspects of sleeve bearing design for high-torque and low-speed propulsion motor applications. Furthermore, the conditions of variable slope tests are examined to prevent oil leakage from the bearing lip seal on the test rig.

The Preparation and Property of Carbon Foams from Carbon Black Embedded Pitch Using PU Template (카본블랙이 내첨된 핏치로부터 폴리우레탄 조공제를 이용한 탄소 폼의 제조 및 특성)

  • Lee, Sangmin;Kim, Ji-Hyun;Jeong, Euigyung;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.268-273
    • /
    • 2016
  • To improve mechanical strength of carbon foams, the carbon black (CB) added carbon foams were fabricated by impregnating different contents of carbon black (CB) and mesophase pitch using polyvinyl alcohol (PVA) solution into polyurethane foam and being followed by heat treatment. The cell wall-thicknesses of carbon foams were controlled by adding amounts of CB, and it was confirmed that the compressive strength of carbon foams was increased as increasing cell wall-thickness. The compressive strength had the highest value of $0.22{\pm}0.05MPa$ with the highest bulk density of $0.44g/cm^3$ when adding 5 wt% CB in carbon foam. However, the thermal conductivity was decreased by adding CB in carbon foam. The results indicated that the thermal conductivities of carbon foams were reduced by increased interlayer spacing ($d_{002}$) with the addition of CB in carbon foams.

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite (탄소-탄소 복합재의 내삭마 내산화 코팅을 위한 초고온 세라믹스의 적용)

  • Kim, Hyun-Mi;Choi, Sung-Churl;Cho, Nam Choon;Lee, Hyung Ik;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.283-293
    • /
    • 2019
  • As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.