Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2019.29.6.283

Application of ultra-high-temperature ceramics to oxidation-resistant and anti-ablation coatings for carbon-carbon composite  

Kim, Hyun-Mi (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Sung-Churl (Division of Materials Science and Engineering, Hanyang University)
Cho, Nam Choon (The 4th R&D Institute, Agency for Defense Development)
Lee, Hyung Ik (The 4th R&D Institute, Agency for Defense Development)
Choi, Kyoon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Abstract
As applications in extreme environments such as aerospace, high-energy plasma and radio-active circumstances increases, the demand for materials that require higher melting points, higher mechanical strength and improved thermal conductivity continues to increase. Accordingly, in order to improve the oxidation/abrasion resistance of the carbon-carbon composite, which is a typical heat-resistant material, a method of using ultra high temperature ceramics was reviewed. The advantages and disadvantages of CVD coating, pack cementation and thermal plasma spraying, the simplest methods for synthesizing ultra-high temperature ceramics, were compared. As a method for applying the CVD coating method to C/C composites with complex shapes, the possibility of using thermodynamic calculation and CFD simulation was proposed. In addition, as a result of comparing the oxidation resistance of the TaC/SiC bi-layer coating and TaC/SiC multilayer coating produced by this method, the more excellent oxidation resistance of the multilayer coating on C/C was confirmed.
Keywords
Ultra-high temperature ceramics; Chemical vapor deposition; Simulation; Carbon-carbon composite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Chen, X. Xiong, G. Li, W. Sun and Y. Long, "Texture structure and ablation behavior of TaC coating on carbon/carbon composites", Appl. Surf. Sci. 257 (2010) 656.   DOI
2 G. Lim X. Xiong and K. Huang, "Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites", Trans, Nonferrous Met. Soc. China 19 (2009) s689.   DOI
3 H. Li, Y. Wang and Q. Fu, "Ablation resistance of carbides-coated C/C Composites", Surf. Eng. 33 (2017) 803.   DOI
4 S. Wang, K. Li, H. Li, Y. Zhang and W. Zhang, "Ablation behavior of CVD-ZrC coating under oxyacetylene torch environment with different heat fluxes", Int. J. Refract. Met. Hard Mater. 48 (2015) 108.   DOI
5 J.H. Park, C.H. Jung, W.J. Kim, D.J. Kim and J.Y. Park, "Microstructure and hardness change of the CVD-ZrC film with different deposition temperature", J. Korean Ceram. Soc. 45 (2008) 567.   DOI
6 https://calphad.org.
7 J.W. Kim, H.T. Kim, K.J. Kim, J.H. Lee and K. Choi, "Application of 3-dimensional phase-diagram using FactSage in $C_3H_8-SiCl_4-H_2$ System", J. Korean Ceram. Soc. 48 (2011) 621.   DOI
8 K. Choi and J.W. Kim, "Thermodynamic comparison of silicon carbide CVD process between $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems", Korean J. Met. Mater. 50 (2012) 569.   DOI
9 L. Guo, L. Li, Y. Guo and T. Deng, "Progress on thermodynamic databases", IOP Conf. Ser. Mater. Sci. Eng. 382 (2018) 1.
10 H.M. Kim, K. Choi, K.B. Shim, N.C. Cho and J.K. Park, "Thermodynamic prediction of TaC CVD process in $TaCl_5-C_3H_6-H_2$ system", Korean J. Mater. Res. 28 (2018) 75.   DOI
11 X. Jin, X. Fan, C. Lu and T. Wang, "Advanced in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites", J. Eur. Ceram. Soc. 38 (2018) 1.   DOI
12 H.M. Kim, K.B. Shim, J.M. Lee, H.I. Lee and K. Choi, "Thermodynamic analysis on the chemical vapor deposition process of Ta-C-H-Cl System", J. Ceram. Process. Res. 19 (2018) 519.   DOI
13 J.W. K im, Y.S. H an, K. C h oi a nd J .H. Lee, "Application of CFD simulation in SiC-CVD process", J. Comput. Fluids Eng. 18 (2013) 67.   DOI
14 K. Choi and J.W. Kim, " CFD simulation o f ch emical vapor deposition of silicon carbide in $CH_3SiCl_3-H_2$ system", Curr. Nanosci. 10 (2014) 135.   DOI
15 R. Storm, T. Benson, C. Galica and P. McCredie, "Learning to Fly: The Wright Brothers' Adventure", P. McCredie (Ed.) (NASA, Cleveland 2003) 1.
16 D. Sziroczak and H. Smith, "A review of design issues specific to hypersonic flight vehicles", Prog. Aerosp. Sci. 84 (2016) 1.   DOI
17 A. Rodriguez and C. Snapp, "Thermal protection systems", Engineering Innovations NASA, 182.
18 W.G. Fahrenholtz, "Ultra-high temperature ceramics: Materials for extreme environment application", 1st ed., W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee and Y. Zhou, Ed. (Wiley, Hoboken, 2014) 6.
19 https://ntrs.nasa.gov/search.jsp?R=20130014035.
20 C.A. Smith, "Space technology research and development", NASA reports (2004) 1.
21 A. Fiorucci, D. Moscatelli and M. Masi, "Mechanism of n-doping of silicon carbide epitaxial films", J. Cryst. Growth 303 (2007) 345.   DOI
22 M.D. Allendorf and R.J. Kee, "A model of silicon carbide chemical vapor deposition", J. Electrochem. Soc. 138 (1991) 841.   DOI
23 A. Veneroni, F. Omarini and M. Masi, "Silicon carbide growth mechanisms from $SiH_4$, $SiHCl_3$ and $nC_3H_8$", Cryst. Res. Technol. 40 (2005) 972.   DOI
24 A. Veneroni and M. Masi, "Gas-phase and surface kinetics of epitaxial silicon carbide growth involving chlorine-containing species", Chem. Vapor Dep. 12 (2006) 562.   DOI
25 A. Fiorucci, D. Moscatelli and M. Masi, "P-doping mechanism in HTCVD silicon carbide", J. Cryst. Growth 303 (2007) 349.   DOI
26 A. Veneroni and M. Masi, "Reduced gas phase and surface kinetics for silicon carbide epitaxial growth", Electrochem. Soc. Transact. 2 (2007) 11.
27 A. Fiorucci, D. Moscatelli and M. Masi, "Homoepitaxial silicon carbide deposition processes via chlorine routes," Surf. Coat. Technol. 201 (2007) 8825.   DOI
28 M. Masi, C. Cavallotti, D. Boccalari and F. Castellana, "Preliminary design of a novel high throughput CVD reactor for photovoltaic applications:, Cryst. Res. Technol. 49 (2014) 614.   DOI
29 J.S. Won and S.G. Lee, "State of the art of composite materials under extreme condition", Prospectives of Industrial Chemistry 17 (2014) 12.
30 http://www.kari.re.kr/kor/sub03_03_02.do.
31 N.J. Shaw, J.A. DiCarlo, N.S. Jacobson, S.R. Levine, J.A. Nesbitt, H.B. Probst, W.A. Sanders and C.A. Stearns, "Materials for engine applications above $3000^{\circ}F$-an overview", NASA reports (1987) 1.
32 S. Tang and C. Hu, "Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review", J. Mater. Sci. Technol. 33 (2017) 117.   DOI
33 Y. Jia, H. Li, L. Li, Q. Fu and K. Li, "Effect of monolithic $LaB_6$ on the ablation resistance of ZrC/SiC coating prepared by supersonic plasma spraying for C/C composites", J. Mater. Sci. Technol. 32 (2016) 996.   DOI
34 R. Wang and R. Ma, "An integrated model for halide chemical vapor deposition of silicon carbide epitaxial films", J. Cryst. Growth 310 (2008) 4248.   DOI
35 R. Wang and R. Ma, "Reactive flow in halide chemical vapor deposition of silicon carbide epitaxial films", J. Thermophys. Heat Transfer 22 (2008) 555.   DOI
36 R. Wang, R. Ma and M. Dudley, "Reduction of chemical reaction mechanism for halide-assisted silicon carbide epitaxial film deposition", Ind. Eng. Chem. Res. 48 (2009) 3860.   DOI
37 J.W. Seo, J.W. Kim, K. Choi and J.H. Lee, "Improvement of uniformity in chemical vapor deposition of silicon carbide by using CFD", J. Korean Phys. Soc. 68 (2016) 170.   DOI
38 Y.K. Voronko, A.A. Sobol and V.E. Shukshin, "Monoclinic-tetragonal phase transition in zirconium and hafnium dioxides: A high-temperature Raman scattering investigation", Phys. Solid State 49 (2007) 1871.
39 M. Tong, Q. Fu, L. Zhou, T. Feng, H. Li, T. Li and K. Li, "Ablation behavior of a novel HfC-SiC gradient coating fabricated by a facile one-step chemical vapor co-deposition", J. Eur. Ceram. Soc. 38 (2018) 4346.   DOI
40 C. Omar, M. Dario, K. Boboridis, W. Tyson, G. Salvarote, D.D. Jayaseelan, R.J. M. Konings, M.J. Reece and W.E. Lee, "Investigating the highest melting temperature materials: A laser melting study of the TaCHfC system", Sci. Rep. 6 (2016) 1.   DOI
41 R. Wang and R. Ma, "Kinetics of halide chemical vapor deposition of silicon carbide film", J. Cryst. Growth 308 (2007) 189.   DOI
42 Y. Wang, X. Xiong, G. Li, H. Liu, Z. Chen, W. Sun and X. Zhao, "Ablation behavior of HfC protective coatings for carbon/carbon composites in an oxyacetylene combustion flame", Corros. Sci. 65 (2012) 549.   DOI
43 C. Zhou, Y. Qi, Y. Cheng and W. Han, "$ZrB_2-SiC-Ta_4HfC_5/Ta_4HfC_5$ oxidation-resistant dual-layer coating fabricated by spark plasma sintering for C/C composites", J. Mater. Eng. Perform. 28 (2019) 512.   DOI
44 Y. Yang, K. Li and C. Zhao, "Ablation mechanism and morphology evolution of the HfC-SiC coating for C/C composites deposited by supersonic atmospheric plasma spraying", Adv. Compos. Lett. 28 (2019) 1.
45 H.I. Yoo, H.S. Kim, B.G. Hong, I.C. Shin, K.H. Lim, B.J. Lim and S.Y. Moon, "Hafnium carbide protective layer coatings on carbon/carbon composites deposited with a v acuum plasma s pray c oating m ethod", J. Eur. Ceram. Soc. 36 (2016) 1581.   DOI
46 Y.W. Yoo, U.H. Nam, S.H. Lee and E.S. Byon, "Characterization of ultra-high temperature ceramic coatings deposited by vacuum plasma spraying", E. C. I. (2015) 1.
47 Y.J. Wang, H.J. Lin, Q.G. Fu, H. Wu, L. Liu and C. Sun, "Ablation behaviour of a TaC coating on SiC coated C/C composites at different temperatures", Ceram. Int. 39 (2013) 359.   DOI
48 Y. Wang, X. Xiong, G. Li, X. Zhao, Z. Chen, W. Sun and Z. Wang, "Effect of gas composition on the microstructure and growth behavior of HfC coatings prepared by LPCVD", Solid State Sci. 20 (2013) 86.   DOI
49 Y. Wang, Z. Li, X. Xiong, X. Li, Z. chen and W. Sun, "Action mechanism of hydrogen gas on deposition of HfC coating using $HfCl_4-CH_4-H_2$-Ar system", Appl. Surf. Sci. 390 (2016) 903.   DOI
50 X. Xiong, Z. Xhen, B. Huang, G. Li, F. Zheng, P. Xiao and H. Zhang, "Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition", Thin Solid Films 517 (2009) 3235.   DOI
51 G. Li, X. Xiong, B. Huang and K. Huang, "Structural characteristics and formation mechanisms of crack-free multilayer TaC/SiC coatings on carbon-carbon composites", Trans. Nonferrous Met. Soc. China 18 (2008) 255.   DOI
52 Y. Wang, X . Xiong, G. Li, Z. Ch en, W. S un a nd X . Zhao, "Preparation and ablation properties of Hf(Ta)C co-deposition coating for carbon/carbon composites", Corros. Sci. 66 (2013) 177.   DOI
53 S.J. McCormack, R.J. Weber and W.M. Kriven, "In-situ investigation of Hf6Ta2O17 anisotropic thermal expansion and topotactic, peritectic transformation", Acta Mater. 161 (2018) 127.   DOI
54 F. Lamouroux, S. Bertrand, R. Pailler, R. Naslain and M. Caraldi, "oxidation-resistance carbon-fiber-reinforced ceramic-matrix composite", Compos. Sci. Technol. 59 (1999) 1073.   DOI
55 Z. Chen, X. Xiong, G. Li and Y. Wang, "Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers", Appl. Surf. Sci. 255 (2009) 9217.   DOI
56 H.M. Kim, S.C. Choi, Y.T. Kim, H.I. Lee and K. Choi, "Thermal shock resistance of TaC/SiC coatings on carbon/carbon composite by CVD process", Submitted to J. Ceram. Proc. Res.