DOI QR코드

DOI QR Code

Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470

ASTM D5470 방법으로 연강과 스테인리스강의 열전도도 측정시 열그리스의 영향

  • Cho, Young-Wook (Division of Materials Science and Engineering, Pusan National University) ;
  • Hahn, Byung-Dong (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Lee, Ju Ho (Reliability Research Center, Korea Electronics Technology Institute) ;
  • Park, Sung Hyuk (School of Materials Science and Engineering, Kyungpook National University) ;
  • Baeg, Ju-Hwan (Division of Materials Science and Engineering, Pusan National University) ;
  • Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
  • Received : 2019.04.04
  • Accepted : 2019.07.02
  • Published : 2019.07.27

Abstract

Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance($R_{th}$) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.

Keywords

References

  1. A. M. Hofmeister and A. G. Whittington, J. Non-Cryst. Solids, 358, 1072 (2012). https://doi.org/10.1016/j.jnoncrysol.2012.02.012
  2. A. I. Kovalev, A. Y. Rashkovsky, D. L. Wainstein, R. Gago, F. Soldera and J. L. Endrino, Curr. Appl. Phys., 16, 459 (2016). https://doi.org/10.1016/j.cap.2016.01.012
  3. B. D. Hahn, Y. Kim, C. W. Ahn, J. J. Choi, J. Ryu, J. W. Kim, W. H. Yoon, D. S. Park, S. Y. Yoon and B. Ma, Ceram. Int., 42, 18141 (2016). https://doi.org/10.1016/j.ceramint.2016.08.128
  4. M. E. Raypah, M. K. Dheepan, M. Dvarajan and F. Sulaiman, Appl. Therm. Eng., 101, 19 (2016). https://doi.org/10.1016/j.applthermaleng.2016.02.092
  5. J. G. Kim, D. H. Bae, B. D. Hahn and Y. R. Cho, Compos. Part B, 110, 1 (2017). https://doi.org/10.1016/j.compositesb.2016.10.086
  6. J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee and Y. R. Cho, J. Mater. Process. Technol., 187-188, 546 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.121
  7. F. Streb, M. Mengel, D. Schweitzer, C. Kasztelan, P. Schoderboeck, G. Ruhl and T. Lampke, IEEE Trans. Compon. Packag. Manuf. Technol., 8, 1024 (2018). https://doi.org/10.1109/TCPMT.2017.2748238
  8. T. Baba, N. Taketoshi and T. Yagi, Jap. J. Appl. Phys., 50, 11R01 (2011).
  9. D. G. Cahill, Rev. Sci. Instrum., 61, 802 (1990). https://doi.org/10.1063/1.1141498
  10. F. Streb, D. Schweitzer, M. Mengel and T. Lampke, 33rd SEME-TRERM Symposium, p.269, San Jose, California, USA (2017).
  11. D. Hautcoeur. Y. Lorgouilloux, A. Leriche, M. Gonon, B. Nait-Ali, D. S. Smith, V. Lardot and F. Cambier, Ceram. Int., 42, 14077 (2016). https://doi.org/10.1016/j.ceramint.2016.06.016
  12. S. Wang, T. Xie and H. Xie, Appl. Therm. Eng., 130, 847 (2018). https://doi.org/10.1016/j.applthermaleng.2017.11.036
  13. J. G. Kim, J. H. Ju, B. D. Hahn, S. H. Park and Y. R. Cho, Korean J. Met. Mater., 55, 446 (2017). https://doi.org/10.3365/KJMM.2017.55.6.446
  14. J. G. Kim, J. H. Ju, D.Y. Kim, S.H. Park and Y. R. Cho, Korean J. Met. Mater., 55, 523 (2017). https://doi.org/10.3365/KJMM.2017.55.7.523
  15. S. Lee and D. Kim, Thermochim. Acta, 653, 126 (2017). https://doi.org/10.1016/j.tca.2017.04.011
  16. M. J. Peet, S. H. Hasan and H. K. D. H. Bhadeshia, Int. J. Heat. Mass. Transfer, 54, 2602 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.01.025
  17. J. N. Sweet, E. P. Roth and M. Moss, Int. J. Thermophys., 8, 593 (1987). https://doi.org/10.1007/BF00503645
  18. M. A. Xavior and M. Adithan, J. Mater. Process. Technol., 209, 900 (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.068
  19. ASTM: D5470-12, ASTM International, United States (2012).
  20. M. Ggrujicic, C. L. Zhao and E. C. Dusel, Appl. Surf. Sci., 246, 290 (2005). https://doi.org/10.1016/j.apsusc.2004.11.030
  21. K. J. Bae, E. W. Jeong, J. H, Ju, H. H. Chun and Y. R. Cho, Sci. Adv. Mater., 8, 1838 (2016). https://doi.org/10.1166/sam.2016.2895
  22. K. J. Bae, W. Yao, Y. He and Y. R. Cho, Korean J. Met. Mater., 55, 624 (2017). https://doi.org/10.3365/KJMM.2017.55.9.624
  23. Y. I. Jung, I. H. Kim, H. G. Kim, H. Jang and S. J. Lee, Korea J. Mater. Res., 29, 271 (2019). https://doi.org/10.3740/MRSK.2019.29.4.271