Browse > Article
http://dx.doi.org/10.14478/ace.2015.1102

Fabrication and Characteristics of Mesophase Pitch-Based Graphite Foams Prepared Using PVA-AAc Solution  

Kim, Ji-Hyun (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Lee, Sangmin (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Jeong, Euigyung (The 4th R&D Institute-4, Agency for Defense Development)
Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.26, no.6, 2015 , pp. 706-713 More about this Journal
Abstract
Graphite foams (GFs) were prepared by adding different amounts of mesophase pitch (MP) into polyvinyl alcohol-acrylic acid (PVA-AAc) solution followed by the heat treatment. It was confirmed that the pore diameters of GFs were controlled by the slurry concentration, which was the mesophase content added in polymer solution, and their thermal conductivity and compressive strength were also controlled by porosities of GFs formed at different conditions. The resulting GFs in this study had the highest thermal conductivity of $53.414{\pm}0.002W/mK$ and compressive strength of $1.348{\pm}0.864MPa$ at 0.69 in porosity. The thermal conductivity of MP based GFs increased approximately 23 times higher than that of using isotropic pitch based GFs due to the developed graphitic structure.
Keywords
graphite foam; mesophase pitch; isotropic pitch; thermal conductivity; compressive strength;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 F. Watanabe, S. Ishida, Y. Korai, I. Mochida, I. Kato, Y. Sakai, and M. Kamatsu, Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres, Carbon, 37, 961-967 (1999).   DOI
2 M. Inagaki, J. Qiu, and Q. Guo, Carbon foam: Preparation and application, Carbon, 87, 128-152 (2015).   DOI
3 J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell, High-thermal-conductivity, mesophase-pitch-derived carbon foams: effect of precursor on structure and properties, Carbon, 38, 953-973 (2000).   DOI
4 C. Chen, E. B. Kennel, A. H. Stiller, P. G. Stansberry, and J. W. Zondlo, Carbon foam derived from various precursors, Carbon, 44, 1535-1543 (2006).   DOI
5 S. Chand, Carbon fibers for composites, J. Mater. Sci., 35, 1303-1313 (2000).   DOI
6 R. Chen, R. Yao, W. Xia, and R. Zou, Electro/photo to heat conversion system based on polyurethane embedded graphite foam, Appl. Energy, 152, 183-188 (2015).   DOI
7 R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012).   DOI
8 L. Zhai, X. Liu, T. Li, Z. Feng, and Z. Fan, Vacuum and ultrasonic co-assisted electroless copper plating on carbon foams, Vacuum, 114, 21-25 (2015).   DOI
9 C. Calebrese, G. A. Eisman, D. J. Lewis, and L. S. Schadler, Swelling and related mechanical and physical properties of carbon nanofiber filled mesophase pitch for use as a bipolar plate material, Carbon, 48, 3939-3946 (2010).   DOI
10 Y. Cheng, C. Fang, J. Su, R. Yu, and T. Li, Carbonization behavior and mesophase conversion kinetics of coal tar pitch using a low temperature molten salt method, J. Anal. Appl. Pyrol., 109, 90-97 (2014).   DOI
11 R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012).   DOI
12 A. G. Straatman, N. C. Gallego, B. E. Thompson, and H. Hangan, Thermal characterization of porous carbon foam-convection in parallel flow, Int. J. Heat and Mass Transfer, 49, 1991-1998 (2006).   DOI
13 R. M. Always-Cooper, D. P. Anderson, and A. A. Ogale, Carbon black modification of mesophase pitch-based carbon fibers Carbon, 59, 40-48 (2013).   DOI
14 W. Lin, B. Sunden, and J. Yuan, A performance analysis of porous graphite foam heat exchangers in vehicles, Appl. Therm. Eng., 50, 1201-1210 (2013).   DOI
15 I. Solmus, Numerical investigation of heat transfer and fluid flow behaviors of a block type graphite foam heat sink inserted in a rectangular channel, Appl. Therm. Eng., 78, 605-615 (2015).   DOI
16 W. W. Focke, H. Badenhorst, S. Ramjee, H. J. Kruger, R. V. Schalkwyk, and B. Rand, Graphite foam from pitch and expandable graphite, Carbon, 73, 41-50 (2014).   DOI
17 H. Liu, T. Li, X. Wang, W. Zhang, and T. Zhao, Preparation and characterization of carbon foams with high mechanical strength using modified coal tar pitches, J. Anal. Appl. Pyrol., 110, 442-447 (2014).   DOI
18 K. Lafdi, M. Almajali, and O. Huzayyin, Thermal properties of copper-coated carbon foams, Carbon, 47, 2620-2626 (2009).   DOI
19 A. Yadav, R. Kumar, G. Bhatia, and G. L. Verma, Development of mesophase pitch derived high thermal conductivity graphite foam using a template method, Carbon, 49, 3622-3630 (2011).   DOI
20 M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Ajuanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015).   DOI
21 S. Kumar, M. Srivastava, Mesophase formation behavior in petroleum residues, Carbon Lett., 16(3), 171-182 (2015).   DOI
22 J. H. Kim and Y. S. Lee, Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution, J. Ind. Eng. Chem., 30, 127-133 (2015).   DOI
23 C. Hou, Q. Zhang, Y. Li, and H. Wang, Graphene-polymer hydrogels with stimulus-sensitive volume changes, Carbon, 50, 1959-1965 (2012).   DOI
24 Z. Zhao, X. Wang, J. Qiu, J. Lin, D. Xu, C. Zhang, and M. Lv, X. Yang, Three-dimentional graphene-based hydrogel/aerogel materials, Rev. Adv. Mater. Sci., 36, 137-151 (2014).
25 H. K Shin, M. Park, H. Y. Kim, and S. J. Park, Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers, Carbon Lett., 16(3), 219-221 (2015).   DOI
26 L. James, S. Austin, C. A. Moore, D. Stephens, K. K. Walsh, and G. Dale Wesson, Modeling the principle physical parameters of graphite carbon foam, Carbon, 48, 2418-2424 (2010).   DOI
27 S. Li, Y. Tian, Y. Zhong, X. Yan, Y. Song, Q. Guo, J. Shi, and L. Liu, Formation mechanism of carbon foams derived from mesophase pitch, Carbon, 49, 618-624 (2011).   DOI
28 J. H. Kim and Y. S. Lee, Preparation and characterization of graphite foams, J. Ind. Eng. Chem., Doi:10.1016/j.jiec.2015.09.003. (2015).   DOI
29 P. K. Pandey, P. Smitha, and N. S. Gajbhiye, Synthesis and characterization of nanostructured PZT encapsulated PVA-PAA hydrogel, J. Polym. Res., 15, 397-402 (2008).   DOI
30 M. S. Park, Y. Ko, M. J. Jung, and Y. S. Lee, Stabilization of pitch-based carbon fibers accompanying electron beam irradiation and their mechanical properties, Carbon Lett., 16(2), 121-126 (2015).   DOI
31 M. Karthik, A. Faik, S. Doppiu, V. Roddatis, and B. D'Aguanno, A simple approach for fabrication of interconnected graphitized macroporous carbon foam with uniform mesopore walls by using hydrothermal method, Carbon, 87, 434-443 (2015).   DOI
32 R. Prieto, E. Louis, and J. M. Molina, Fabrication of mesophase pitch-derived open-pore carbon foams by replication processing, Carbon, 50, 1904-1912 (2012).   DOI
33 Y. Chen, B. Z. Chen, X. C. Shi, H. Xu, Y. J. Hu, Y. Yuan, and N. B. Shen, Preparation of pitch-based carbon foam using polyurethane foam template, Carbon, 45, 2126-2139 (2007).   DOI
34 G. Chollon, S. Delettrez, and F. Langlais, Chemical vapour infiltration and mechanical properties of carbon open-cell foams, Carbon, 66, 18-30 (2014).   DOI
35 K. C. Leong and H. Y. Li, Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model, Int. J. Heat and Mass Transfer, 54, 5491-5496 (2011).   DOI
36 N. Bekoz and E. Oktay, Mechanical properties of low alloy steel foams: Dependency on porosity and pore size, Mater. Sci. Eng. A, 576, 82-90 (2013).   DOI
37 T. Araki, K. Asano, T. Awao, and H. Takita, Method for heavying polycyclic substances, US Patent 3,718,574 (1973).
38 M. Calvo, R. Garcia, A. Arenillas, I. Suarez, and S. R. Moinelo, Carbon foams from coals. A preliminary study, Fuel, 84, 2184-2189 (2005).   DOI