Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.7.443

Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470  

Cho, Young-Wook (Division of Materials Science and Engineering, Pusan National University)
Hahn, Byung-Dong (Functional Ceramics Department, Korea Institute of Materials Science)
Lee, Ju Ho (Reliability Research Center, Korea Electronics Technology Institute)
Park, Sung Hyuk (School of Materials Science and Engineering, Kyungpook National University)
Baeg, Ju-Hwan (Division of Materials Science and Engineering, Pusan National University)
Cho, Young-Rae (Division of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.29, no.7, 2019 , pp. 443-450 More about this Journal
Abstract
Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance($R_{th}$) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.
Keywords
thermal conductivity; mild steel; light flash analysis; DynTIM Tester; thermal grease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. M. Hofmeister and A. G. Whittington, J. Non-Cryst. Solids, 358, 1072 (2012).   DOI
2 A. I. Kovalev, A. Y. Rashkovsky, D. L. Wainstein, R. Gago, F. Soldera and J. L. Endrino, Curr. Appl. Phys., 16, 459 (2016).   DOI
3 B. D. Hahn, Y. Kim, C. W. Ahn, J. J. Choi, J. Ryu, J. W. Kim, W. H. Yoon, D. S. Park, S. Y. Yoon and B. Ma, Ceram. Int., 42, 18141 (2016).   DOI
4 M. E. Raypah, M. K. Dheepan, M. Dvarajan and F. Sulaiman, Appl. Therm. Eng., 101, 19 (2016).   DOI
5 J. G. Kim, D. H. Bae, B. D. Hahn and Y. R. Cho, Compos. Part B, 110, 1 (2017).   DOI
6 J. E. Lee, D. H. Bae, W. S. Chung, K. H. Kim, J. H. Lee and Y. R. Cho, J. Mater. Process. Technol., 187-188, 546 (2007).   DOI
7 F. Streb, M. Mengel, D. Schweitzer, C. Kasztelan, P. Schoderboeck, G. Ruhl and T. Lampke, IEEE Trans. Compon. Packag. Manuf. Technol., 8, 1024 (2018).   DOI
8 T. Baba, N. Taketoshi and T. Yagi, Jap. J. Appl. Phys., 50, 11R01 (2011).
9 D. G. Cahill, Rev. Sci. Instrum., 61, 802 (1990).   DOI
10 F. Streb, D. Schweitzer, M. Mengel and T. Lampke, 33rd SEME-TRERM Symposium, p.269, San Jose, California, USA (2017).
11 D. Hautcoeur. Y. Lorgouilloux, A. Leriche, M. Gonon, B. Nait-Ali, D. S. Smith, V. Lardot and F. Cambier, Ceram. Int., 42, 14077 (2016).   DOI
12 S. Wang, T. Xie and H. Xie, Appl. Therm. Eng., 130, 847 (2018).   DOI
13 J. G. Kim, J. H. Ju, B. D. Hahn, S. H. Park and Y. R. Cho, Korean J. Met. Mater., 55, 446 (2017).   DOI
14 J. G. Kim, J. H. Ju, D.Y. Kim, S.H. Park and Y. R. Cho, Korean J. Met. Mater., 55, 523 (2017).   DOI
15 S. Lee and D. Kim, Thermochim. Acta, 653, 126 (2017).   DOI
16 ASTM: D5470-12, ASTM International, United States (2012).
17 M. J. Peet, S. H. Hasan and H. K. D. H. Bhadeshia, Int. J. Heat. Mass. Transfer, 54, 2602 (2011).   DOI
18 J. N. Sweet, E. P. Roth and M. Moss, Int. J. Thermophys., 8, 593 (1987).   DOI
19 M. A. Xavior and M. Adithan, J. Mater. Process. Technol., 209, 900 (2009).   DOI
20 M. Ggrujicic, C. L. Zhao and E. C. Dusel, Appl. Surf. Sci., 246, 290 (2005).   DOI
21 K. J. Bae, E. W. Jeong, J. H, Ju, H. H. Chun and Y. R. Cho, Sci. Adv. Mater., 8, 1838 (2016).   DOI
22 Y. I. Jung, I. H. Kim, H. G. Kim, H. Jang and S. J. Lee, Korea J. Mater. Res., 29, 271 (2019).   DOI
23 K. J. Bae, W. Yao, Y. He and Y. R. Cho, Korean J. Met. Mater., 55, 624 (2017).   DOI