• Title/Summary/Keyword: therapeutic potential

Search Result 2,195, Processing Time 0.03 seconds

Anti-inflammatory Effects of Jema-sunghyangjungkisan and Yeoldahanso-tang (제마성향정기산과 열다한소탕의 항염증 효능 비교 연구)

  • Shim, Eun Hyoung;You, Sooseong;Lee, Hoyoung
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.61-68
    • /
    • 2017
  • Objectives : Jema-sunghyangjungkisan (JSGS, Jima Xingxiang Zhengqi san) and yeoldahanso-tang (YDHST, Reduo hanshao decoction) are traditional herbal formulas which commonly used to prevent and treat stroke in traditional korean medicine. However, JSGS and YDHST extracts have not been previously reported to have anti-inflammatory effects. Therefore, We measured the anti-inflammatory effects of JSGS and YDHST extracts on lipopolysaccharide (LPS)-stimulated murine macrophage cell line, RAW 264.7 cells. Methods : To investigate the anti-inflammatory activities of JSGS and YDHST extracts, tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6, nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were examined in RAW 264.7 cells with LPS of $1{\mu}g/m{\ell}$. Results : JSGS and YDHST extracts did not have any cytotoxicity in RAW 264.7 cells. $TNF-{\alpha}$ concentration decreased 49.67% at $500{\mu}g/m{\ell}$ by JSGS but, YDHST has no statistically significant effect at all concentration. IL-6 accumulation on JSGS and YDHST extracts in LPS-stimulated RAW 264.7 cells reduced 22.03% and 41.44% at $500{\mu}g/m{\ell}$ respectively. In addition, JSGS has no inhibitory effects on NO accumulation and YDHST reduced 10.08% at $500{\mu}g/m{\ell}$. Moreover, JSGS and YDHST treatment does-dependently reduced the $PGE_2$ production. In particular, YDHST ($500{\mu}g/m{\ell}$) extract was more effective compared with $10ng/m{\ell}$ of indomethacin which is the $PGE_2$ positive control. Conclusions : Our results suggest that treatment of JSGS and YDHST extracts decreased the LPS-stimulated inflammation. Therefore, in the present study, we demonstrated that JSGS and YDHS may be used as a potential anti-inflammatory therapeutic agent.

Angelica keiskei Improved Beta-amyloid-induced Memory Deficiency of Alzheimer's Disease (아밀로이드 베타로 유발한 알츠하이머병 모델에서 신선초의 기억력 개선 효과)

  • Lee, Jihye;Kim, Hye-Jeong;Kim, Dong-Hyun;Shin, Bum Young;Jung, Ji Wook
    • The Korea Journal of Herbology
    • /
    • v.34 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Objectives : Amyloid ${\beta}(A{\beta})$ could induce cognitive deficits through oxidative stress, inflammation, and neuron death in Alzheimer's disease (AD). This study was investigated the effect of Angelica keiskei KOIDZUMI (AK) on memory in $A{\beta}$-induced an AD model. Methods : AK was extracted uses 70% ethanol solvent. Total polyphenol and flavonoids content were obtained by the Folin-Ciocalteu and the Ethylene glycol colorimetric methods, respectively. The antioxidant activities were assessed through free radical scavenging assays using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) methods. Intracerebroventrical (i.c.v) injection of $A{\beta}$ 1-42 was used to induce AD in male ICR mice, followed by administrations of 5, 10 or 20 mg/kg AK on a daily. Animals were subjected to short and long term memory behavior in Y-maze and passive avoidance test. Results : The total polyphenol and flavonoids contents of the AK extract were $88.73{\pm}6.36mg$ gallic acid equivalent/g, $84.21{\pm}5.04mg$ rutin equivalent/g, respectively. The assays of DPPH and ABTS revealed that AK extract in treated concentrations (31.25, 62.5, 125, 250, 500, $1000{\mu}g/m{\ell}$) increased antioxidant activity in a dose-dependent manner. Oral administration of AK extract significantly reversed the $A{\beta}$ 1-42-induced decreasing of the spontaneous alternation in the Y-maze test and $A{\beta}$ 1-42-induced shorting of the step-through latency in the passive avoidance test. Conclusions : The findings suggest that AK indicated the antioxidant protective effects against $A{\beta}$-induced memory deficits, and therefore a potential lead natural therapeutic drug or agent for AD.

Evaluation of Dermal Bioactive Properties of the Gastrodiae Rhizoma Extract by Steaming Times (증숙 횟수에 따른 천마 추출물의 피부 생리 활성 평가)

  • Lee, AhReum;Kim, GeonHyeong;Kwon, OJun;Kim, SooHyun;Kim, KyeongJo;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • Objectives : Gastrodiae Rhizoma extract (GE) is possess the various bioactive compounds such as gastrodin, vanilyl alcool and p-hydroxybenzyl alcohol. Various processing methods such as steaming have been widely applied to ease ingestion and enhance the therapeutic effects of plant materials including GE in East-Asia area. The aim of this study was to evaluate the dermal bioactive properties of GE. Methods : First, total phenol, total flavonoid, gastrodin and ergothionein contents of GE were measured. In order to evaluate the dermal bioactive properties of steamed GE compared with not-steamed GE, tyrosinase, collagenase and elastase inhibitory activity were tested. Furthermore, the anti-oxidant activity of GE assessed based on DPPH and ABTS radical scavenging assay. Results : In results, total phenol and total flavonoid contents were increased when 9 times steamed compared to not-steamed GE. Also, GE increased gastrodin contents, in proportion to the number of steaming times and ergothioneine content was abolished in the steaming state. The DPPH radical scavenging activity of GE increased by steaming, but the ABTS radical scavenging activity was not related to the steaming process. In addition, the tyrosinase inhibitory activity was increased as the number of steaming times of GE increased. Collagenase was most inhibited by 4 times steamed GE, and elastase was inhibited by 8 times steamed GE. Conclusion : In conclusion, these results suggest that steamed GE extract has the potential as a cosmetic material which possess anti-oxidant and whitening activities than not steamed GE.

The effects of a Mixture of Puerariae Flos Extract and Citri Unshius Pericarpium Extract on Estrogenic Activities and Osteoclastogenesis (갈화(葛花)와 진피(陳皮) 추출물로 이루어진 복합물의 에스트로겐 활성과 파골세포 분화억제효과)

  • Cho, Hosong;Lee, Boyoung;Lee, Won Kyung;Lee, Jun Ho;Park, Dongjun;Choi, Changil;Jin, Mu Hyun;Roh, Seok-Seon;Ju, Young-Sung
    • The Korea Journal of Herbology
    • /
    • v.35 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives : In this study, we examined the estrogenic activities and anti-osteo clastogenesis effects of PCE17, a mixture of PE (an extract of Puerariae Flos), and CE (an extract of Citri Unshius Pericarpium). Methods : The estrogenic effect of PCE17, PE and CE were examined by ER-β/ERE reporter gene assay and proliferation assay in 293 T and MCF-7 cells. The expression of estrogen-responsive gene and protein were checked by Real Time-PCR (RT-PCR) and Western blotting in MCF-7 cells. Inhibitory effect of PCE17, PE and CE on RANKL-induced osteoclast differentiation were evaluated by TRAP staining and RT-PCR in primary osteoclast precursors from rat bone marrow cells. Results : PCE17 and PE bind to ERs (estrogen receptors) and show estrogenic activities in 293T cells. They also stimulated the proliferation of MCF-7 cells and increased the expression of ER response gene, pS2. Tectorigenin, an active ingredient of PE, shows similar estrogenic activities in MCF-7 cells. PCE17 and CE inhibited RANKL-induced osteoclastogenesis in rat primary osteoclast precursor cells and down-regulated the osteoclast-specific genes of Nfatc1, Ctsk, and Acp5. Conclusions : In conclusion, PCE17 may have therapeutic potential in cases of menopause and osteoporosis.

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Korean Red Ginseng inhibits methamphetamine addictive behaviors by regulating dopaminergic and NMDAergic system in rodents

  • Lee, Bo-Ram;Sung, Su-Jeong;Hur, Kwang-Hyun;Kim, Seong-Eon;Ma, Shi-Xun;Kim, Seon-Kyung;Ko, Yong-Hyun;Kim, Young-Jung;Lee, Youyoung;Lee, Seok-Yong;Jang, Choon-Gon
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.147-155
    • /
    • 2022
  • Background: Methamphetamine (METH) is the most widely used psychostimulant and has been known to exhibit reinforcing effects even after long abstinence. We showed the inhibitory effect of Korean Red Ginseng extract (RGE) on METH-induced addictive behaviors in animal models mimicking the human drug-use pattern. Methods: We first investigated the effect of RGE on the acquisition of METH-induced dependence using self-administration and conditioned place preference (CPP) tests. Additionally, further experiments such as METH-induced motivational behavior and seeking behavior were conducted. To study the underlying mechanism, dopamine receptor, dopamine transporter, and N-methyl-D-aspartate receptor were assessed through Western blot analysis. Results: Treatment with RGE significantly reduced METH-induced self-administration on a fixed-ratio 1 schedule of reinforcement. It could be also decreased a progressive ratio schedule, and inhibited METH-primed reinstatement. In CPP, RGE significantly prevented the development of METH-induced CPP. Moreover, RGE not only shortened the withdrawal period clearly, but also prevented the reinstatement of CPP. RGE treatment also reversed METH-induced overexpression of dopamine transporter, dopamine receptor D1, and NMDA receptor in the nucleus accumbens. Conclusion: Our findings reflect that RGE has therapeutic potential to suppress METH-induced addictive behaviors by regulating dopaminergic and NMDAergic system.

Can Panax ginseng help control cytokine storm in COVID-19?

  • Choi, Jong Hee;Lee, Young Hyun;Kwon, Tae Woo;Ko, Seong-Gyu;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.337-347
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

Recent progress (2015-2020) in the investigation of the pharmacological effects and mechanisms of ginsenoside Rb1, a main active ingredient in Panax ginseng Meyer

  • Lin, Zuan;Xie, Rongfang;Zhong, Chenhui;Huang, Jianyong;Shi, Peiying;Yao Hong
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.39-53
    • /
    • 2022
  • Ginsenoside Rb1 (Rb1), one of the most important ingredients in Panax ginseng Meyer, has been confirmed to have favorable activities, including reducing antioxidative stress, inhibiting inflammation, regulating cell autophagy and apoptosis, affecting sugar and lipid metabolism, and regulating various cytokines. This study reviewed the recent progress on the pharmacological effects and mechanisms of Rb1 against cardiovascular and nervous system diseases, diabetes, and their complications, especially those related to neurodegenerative diseases, myocardial ischemia, hypoxia injury, and traumatic brain injury. This review retrieved articles from PubMed and Web of Science that were published from 2015 to 2020. The molecular targets or pathways of the effects of Rb1 on these diseases are referring to HMGB1, GLUT4, 11β-HSD1, ERK, Akt, Notch, NF-κB, MAPK, PPAR-γ, TGF-β1/Smad pathway, PI3K/mTOR pathway, Nrf2/HO-1 pathway, Nrf2/ARE pathway, and MAPK/NF-κB pathway. The potential effects of Rb1 and its possible mechanisms against diseases were further predicted via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and disease ontology semantic and enrichment (DOSE) analyses with the reported targets. This study provides insights into the therapeutic effects of Rb1 and its mechanisms against diseases, which is expected to help in promoting the drug development of Rb1 and its clinical applications.

Preliminary Mechanistic Study on the Trachea Smooth Muscle Relaxant Activity of Aqueous Leaf Extract of Tridax Procumbens in Male Wistar Rats

  • Salami, Shakiru Ademola;Salahdeen, Hussein Mofomosara;Anidu, Babatunde Shuaib;Murtala, Babatunde Adekunle;Alada, AbdulRasak Akinola
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.209-215
    • /
    • 2022
  • Objectives: Aqueous leaf extract of Tridax procumbens (ALETP) has potent relaxant activity. However, this relaxant activity in respiratory smooth muscle remains uninvestigated. This study investigates the effect of ALETP on the contractile activity of tracheal smooth muscle (TSM) in adult male Wistar rats. Methods: Twelve male Wistar rats divided into 2 groups and were treated with either 100 mg/kg of ALETP (ALETP treatment group) or vehicle (distilled water; control group) through oral gavage for 4 weeks. Dose responses of TSM from the 2 groups to acetylcholine (10-9 to 10-5 M), phenylephrine (10-9 to 10-5 M), and potassium chloride (KCl; 10-9 to 10-4 M) were determined cumulatively. Furthermore, cumulative dose responses to acetylcholine (10-9 to 10-5 M) after pre-incubation of TSM with atropine (10-5 M), L-NAME (10-4 M), indomethacin (10-4 M), and nifedipine (10-4 M), were determined. Results: Treatment with ALETP substantially inhibited TSM contraction stimulated by cumulative doses of acetylcholine, phenylephrine, and KCl. Furthermore, preincubation of TSM from the 2 groups in atropine significantly inhibited contractility in TSM. Incubation in L-NAME and indomethacin also significantly inhibited contractility in TSM of ALETP-treated rats compared to that of controls. Contractile activity of the TSM was also inhibited significantly with incubation in nifedipine in ALETP-treated rats. Conclusion: ALETP enhanced relaxant activity in rat TSM primarily by blocking the L-type calcium channel and promoting endothelial nitric oxide release. ALETP contains agents that may be useful in disorders of the respiratory tract.

Potential application of herbal medicine treatment based on pattern identification for canine cognitive dysfunctional syndrome: a comparative analysis of Korea medicine therapy for patients with dementia (반려견 인지기능장애증후군에 대한 한의 진단 및 한약치료 적용 가능성 고찰: 치매환자 국내한의치료기술과 비교 분석)

  • Jung, Kyungsook;Zhao, HuiYan;Choi, Yujin;Jang, Jung-Hee
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.3
    • /
    • pp.25.1-25.9
    • /
    • 2022
  • Canine cognitive dysfunction syndrome (CDS) is a neurodegenerative disease that causes cognitive and behavioral disorders and reduces the quality of life in dogs and their guardians. This study reviewed the complementary and alternative medicine (CAM) for CDS and compared the diagnosis and therapy of CAM between CDS in canines and dementia in humans. The evaluation tools for the diagnosis of CDS and dementia were similar in the neurological and neuropsychiatric examinations, daily life activity, cognitive tests, and neuroimaging, but the evaluation for dementia was further subdivided. In CAM, pattern identification is a diagnostic method for accurate, personalized treatment, such as herbal medicine. For herbal medicine treatment of cognitive impairment in canines and humans, a similar pattern identification classified as deficiency (Qi, blood, and Yin) and Excess (phlegm, Qi stagnation, and blood stasis) is being used. However, the veterinary clinical basis for verifying the efficacy and safety of CAM therapies for CDS is limited. Therefore, based on CAM evidence in dementia, it is necessary to establish CDS-targeted CAM diagnostic methods and therapeutic techniques considering the anatomical, physiological, and pathological characteristics of dogs.