• 제목/요약/키워드: theorem

검색결과 3,543건 처리시간 0.024초

C. M. Guzay의 Quadrant Theorem에 대한 고찰 (C. M. Guzay and the Quadrant Theorem)

  • 인창식;이영준
    • 턱관절균형의학회지
    • /
    • 제2권1호
    • /
    • pp.13-16
    • /
    • 2012
  • Objectives: The quadrant theorem is a theorem proposed by C. M. Guzay in the field of functional, holistic dentistry. There are not much of scientific literature on the quadrant theorem. This study briefly reviewed basic concepts of quadrant theorem. Methods: A publication by Guzay and research articles were searched and reviewed. The quadrant theorem is depicted as a series of illustrations and accompanied explanations. Results: The primary concept of the quadrant theorem was presented in 1952. Based on geometric biophysics of the occlusion and related anatomical functions, physiological pivotal axis of the mandible is analyzed to occurs at the dens (the sub-atlas area). Composite muscular activity links the mandibular posture with C1-C2, which is then linked with the spinal posture. Twenty illustrations are progressively presented on the physiognomy, occlusion, and analysis of anatomical functions. The balanced distribution of the forces gives the durability of the functions in life. Conclusions: The quadrant theorem provides a functional linkage between the mandibular posture and the upper cervical vertebrae.

  • PDF

Generalized Weyl's Theorem for Some Classes of Operators

  • Mecheri, Salah
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.553-563
    • /
    • 2006
  • Let A be a bounded linear operator acting on a Hilbert space H. The B-Weyl spectrum of A is the set ${\sigma}_{B{\omega}}(A)$ of all ${\lambda}{\in}\mathbb{C}$ such that $A-{\lambda}I$ is not a B-Fredholm operator of index 0. Let E(A) be the set of all isolated eigenvalues of A. Recently in [6] Berkani showed that if A is a hyponormal operator, then A satisfies generalized Weyl's theorem ${\sigma}_{B{\omega}}(A)={\sigma}(A)$\E(A), and the B-Weyl spectrum ${\sigma}_{B{\omega}}(A)$ of A satisfies the spectral mapping theorem. In [51], H. Weyl proved that weyl's theorem holds for hermitian operators. Weyl's theorem has been extended from hermitian operators to hyponormal and Toeplitz operators [12], and to several classes of operators including semi-normal operators ([9], [10]). Recently W. Y. Lee [35] showed that Weyl's theorem holds for algebraically hyponormal operators. R. Curto and Y. M. Han [14] have extended Lee's results to algebraically paranormal operators. In [19] the authors showed that Weyl's theorem holds for algebraically p-hyponormal operators. As Berkani has shown in [5], if the generalized Weyl's theorem holds for A, then so does Weyl's theorem. In this paper all the above results are generalized by proving that generalizedWeyl's theorem holds for the case where A is an algebraically ($p,\;k$)-quasihyponormal or an algebarically paranormal operator which includes all the above mentioned operators.

  • PDF

ON THE NEWTON-KANTOROVICH AND MIRANDA THEOREMS

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • 제24권3호
    • /
    • pp.289-293
    • /
    • 2008
  • We recently showed in [5] a semilocal convergence theorem that guarantees convergence of Newton's method to a locally unique solution of a nonlinear equation under hypotheses weaker than those of the Newton-Kantorovich theorem [7]. Here, we first weaken Miranda's theorem [1], [9], [10], which is a generalization of the intermediate value theorem. Then, we show that operators satisfying the weakened Newton-Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

  • PDF

ELEMENTS OF THE KKM THEORY FOR GENERALIZED CONVEX SPACE

  • Park, Se-Hei
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.1-28
    • /
    • 2000
  • In the present paper, we introduce fundamental results in the KKM theory for G-convex spaces which are equivalent to the Brouwer theorem, the Sperner lemma, and the KKM theorem. Those results are all abstract versions of known corresponding ones for convex subsets of topological vector spaces. Some earlier applications of those results are indicated. Finally, We give a new proof of the Himmelberg fixed point theorem and G-convex space versions of the von Neumann type minimax theorem and the Nash equilibrium theorem as typical examples of applications of our theory.

TRANSLATION THEOREM ON FUNCTION SPACE

  • Choi, Jae Gil;Park, Young Seo
    • Korean Journal of Mathematics
    • /
    • 제11권1호
    • /
    • pp.17-30
    • /
    • 2003
  • In this paper, we use a generalized Brownian motion process to define a translation theorem. First we establish the translation theorem for function space integrals. We then obtain the general translation theorem for functionals on function space.

  • PDF

APPLICATIONS OF GENERALIZED KUMMER'S SUMMATION THEOREM FOR THE SERIES 2F1

  • Kim, Yong-Sup;Rathie, Arjun K.
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1201-1211
    • /
    • 2009
  • The aim of this research paper is to establish generalizations of classical Dixon's theorem for the series $_3F_2$, a result due to Bailey involving product of generalized hypergeometric series and certain very interesting summations due to Ramanujan. The results are derived with the help of generalized Kummer's summation theorem for the series $_2F_1$ obtained earlier by Lavoie, Grondin, and Rathie.

Taylor 정리의 역사적 고찰과 교수방안 (A History of Taylor's Theorem and Its Teaching Strategy)

  • 김성옥
    • 한국수학사학회지
    • /
    • 제31권1호
    • /
    • pp.19-35
    • /
    • 2018
  • Taylor's Theorem is an important theorem which is applied to several disciplines. It is usually taught in a college-level calculus course for the first time. Many students have a hard time to understand or to make applications. In this paper, we look into the history of the development of Taylor's theorem and consider a teaching strategy of the theorem.

ALTERNATIVE DERIVATIONS OF CERTAIN SUMMATION FORMULAS CONTIGUOUS TO DIXON'S SUMMATION THEOREM FOR A HYPERGEOMETRIC $_3F_2$ SERIES

  • Choi, June-Sang;Rathie Arjun K.;Malani Shaloo;Mathur Rachana
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제13권4호
    • /
    • pp.255-259
    • /
    • 2006
  • In 1994, Lavoie et al. have obtained twenty tree interesting results closely related to the classical Dixon's theorem on the sum of a $_3F_2$ by making a systematic use of some known relations among contiguous functions. We aim at showing that these results can be derived by using the same technique developed by Bailey with the help of Gauss's summation theorem and generalized Kummer's theorem obtained by Lavoie et al..

  • PDF