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ON THE NEWTON–KANTOROVICH AND MIRANDA
THEOREMS

Ioannis K. Argyros

Abstract. We recently showed in [5] a semilocal convergence theorem
that guarantees convergence of Newton’s method to a locally unique so-

lution of a nonlinear equation under hypotheses weaker than those of
the Newton–Kantorovich theorem [7]. Here, we first weaken Miranda’s
theorem [1], [9], [10], which is a generalization of the intermediate value

theorem. Then, we show that operators satisfying the weakened Newton–
Kantorovich conditions satisfy those of the weakened Miranda’s theorem.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x⋆ of equation

(1.1) F (x) = 0,

where, F is defined on an open convex subset S of IRn (n is a positive integer)
with values in IRn.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations [4], [6], [7], [8].

Newton’s methods:

(1.2) xm+1 = xm − F ′(xm)−1 F (xm) (m ≥ 0), (x0 ∈ S)

has been used to generate a sequence {xm} approximating x⋆. A survey of local
and semilocal convergence theorems on Newton’s method (1.2) can be found
in [4], [6], [8], and the references there.

We recently showed in [5] that the famous Newton–Kantorovich condition
(see (2.17)) which is the sufficient hypothesis for the convergence of Newton’s
method can be weakened without any additional computational cost than it
is already appearing in the Newton–Kantorovich theorem [8]. Here, we first
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weaken the generalization of Miranda’s theorem, which is an extension of the
intermediate value theorem (Theorem 4.3 in [9]). Then, we show that operators
satisfying the weakened Newton–Kantorovich conditions satisfy those of the
weakened Miranda’s theorem. That is our approach extends the applicability
of Miranda’s theorem.

2. Convergence analysis for Newton’s method (1.2)

For brevity and to avoid repetitions, we refer the reader to [9] for the termi-
nology introduced here.

Let IRn be equipped with a norm denoted by ∥ . ∥, and IRn×n with a norm
∥ . ∥, such that ∥ M x ∥≤∥ M ∥ ∥ x ∥ for all M ∈ Rn×n, and x ∈ Rn. Choose
constants c0, c1 > 0, such that, for all x ∈ Rn:

(2.1) c0 ∥ x ∥∞≤ ∥ x ∥ ≤ c1 ∥ x ∥∞,

since all norms on finite dimentional spaces are equivalent. Set:

(2.2) c =
c0

c1
≤ 1.

Definition 2.1. Let S ∈ IRn be an open convex set, and let G : S −→ IRn,
be a differentiable operator on S. Let x0 ∈ S, and assume:

(2.3) G′(x0) = I (the identity matrix);

there exists η ≥ 0, such that

(2.4) ∥ G(x0) ∥≤ η;

there exist ℓ0 ≥ 0, such that

(2.5) ∥ G′(x) − G′(x0) ∥≤ ℓ0 ∥ x − x0 ∥ for all x ∈ S.

Define

(2.6) h0 = ℓ0 η.

We say that G satisfies the weak center–Kantorovich condition at x0 if:

(2.7) h0 ≤ 1
2
.

We also say that G satisfies the strong center–Kantorovich condition at x0 if:

(2.8) h0 ≤ c2

2
.

Moreover, define:
(2.9)

r1 =
c −

√
c2 − 2 h0

ℓ0
, r2 =

c +
√

c2 − 2 h0

ℓ0
, and R = [r1, r2] for ℓ0 ̸= 0.

Furthermore, if ℓ0 = 0, define:

(2.10) r1 =
η

c
, and R = [0, ∞).
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As in [8], we need to introduce certain concepts. Let r > 0, x0 ∈ IRn, and
define:
U(r) = {z ∈ IRn : ∥ z ∥≤ r}, U(x0, r) = {x = x0 + z ∈ IRn : z ∈ U(r)},

U+
k (r) = {z ∈ IRn : ∥ z ∥= r, zk =∥ z ∥∞},

U−
k (r) = {z ∈ IRn : ∥ z ∥= r, zk = − ∥ z ∥∞},

U+
k (x0, r) = {x = x0 + z ∈ IRn : z ∈ U+

k (r)},

U−
k (x0, r) = {x = x0 + z ∈ IRn : z ∈ U−

k (r)},

for all k = 1, 2, · · · , n. From now on we set:

(2.11) G(x) = F ′(x0)−1 F (x) (x ∈ S).

We show the main result which states that if G satisfies (2.8) for any norm,
then G satisfies the Miranda conditions on an appropriate scalar multiple of
the unit ball in that norm.

Theorem 2.2. Let G : S −→ IRn be a differentiable operator, defined on
an open convex subset of IRn. Assume that G satisfies the strong center–
Kantorovich condition given by (2.8). Then, for any r ∈ IR, with U(x0, r) ⊂ S,
the following hold:

(2.12) (a) U = U(r) = U(x0, r) s a Miranda domain [9],

and

(2.13) U1 = U1(r) =
{

U+
1 (x0, r), U−

1 (x0, r), · · · , U+
n (x0, r), U−

n (x0, r)
}

is a Miranda partition [9] of the boundary ∂U . It is a canonical Miranda
partition [9] for r > 0, and a trivial Miranda domain for r = 0;

(2.14) (b)
Gk(x) ≥ 0 for all x ∈ U+

k (x0, r), k = 1, 2, · · · , n

Gk(x) ≤ 0 for all x ∈ U−
k (x0, r), k = 1, 2, · · · , n;

(c) G satisfies the Miranda conditions;

(d) if G(x0) = 0, and ℓ0 > 0, then G satisfies the Miranda conditions for

any r ∈
[
0,

2 c

ℓ0

]
, such that U(x0, r) ⊆ S.

Proof. The proof follows as in Theorem 4.3 in [9], but by using (2.5), (2.8)
instead of Lipschitz condition:

(2.15) ∥ G′(x) − G′(y) ∥≤ ℓ ∥ x − y ∥ for all x, y ∈ S,
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and strong Kantorovich condition at x0:

(2.16) h = ℓ η ≤ c2

2
,

respectively. ¤
Remark 2.3. Note that:

(2.17) h ≤ 1
2

is the famous Kantorovich hypothesis (see the Kantorovich theorem for the
semilocal convergence of Newton’s method [2]–[9]).

Remark 2.4. If ℓ = ℓ0, then our Theorem 2.2 becomes Theorem 4.3 in [9].
Moreover, if ∥ . ∥ is the maximum norm, then it becomes Theorem 3 [1].
However in general:

(2.18) ℓ0 ≤ ℓ.

Then, we have:

(2.19) h ≤ c2

2
=⇒ h0 ≤ c2

2
.

Similary, the Kantorovich condition (2.17) is such that:

(2.20) h ≤ 1
2

=⇒ h0 ≤ 1
2
,

but not vice verca unless if ℓ = ℓ0. If strict inequality hold in (2.18), and
condition (2.16) or (2.17) are not satisfied, then the conclusions of Theorem
4.3 in [9] or Theorem 1 in [7] respectively do not necessarily hold. However,
if (2.7) holds, the conclusions of our Theorem 2.2 hold. Furthemore as the

following example demonstrates
ℓ

ℓ0
can be arbitrarily large in general.

Example 2.5. Let x0 = 0, and define function F on IR by:

(2.21) F (x) = a0 x + a1 + a2 sin ea3 x,

where ai, i = 1, 2, 3 are given parameters. Using (2.5), (2.15) and (2.21), it can

easily be seen that for a3 large and a2 sufficiently small,
ℓ

ℓ0
can be arbitrarily

large. That is (2.7) ((2.23) (2.24), see Remark 2.6) can be satisfied but not
(2.17) (or (2.16)).

Remark 2.6. According to the Kantorovich theorem [8], condition (2.17) guar-
antees the convergence of Newton’s method (1.2) to x⋆. In particular, if strict
inequality holds in (2.17), the convergence is quadratic (only linear in case of
equality in (2.17)). However, this is not the case for condition (2.7) (only lin-
ear). To rectify this and still use a condition weaker than (2.17) (or (2.16))
define:

(2.22) h = ℓ0 η.
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We showed in [5] that if:

(2.23) h ≤ α,

where

α =
√

ℓ2 + 8 ℓ0 ℓ − ℓ√
ℓ2 + 8 ℓ0 ℓ + ℓ

,

then, finer conclusions than the ones given by the Kantorovich theorem hold
[8]. Condition

(2.24) h ≤ c2

2
can now replace (2.16) in Theorem 4.3 in [9].
If ℓ0 = ℓ, condition (2.24) reduces to (2.16). Otherwise (2.24) is an improvement
over condition (2.16), obtained under the same computational cost, since in
practice, the computation of constant ℓ requires that of ℓ0 (see also (2.20) with
h0 replaced by h).
This study further improves the results reported in [2].
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