• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.032 seconds

An LMI Approach to Nonlinear Sliding Surface Design (비선형 슬라이딩 평면의 설계를 위한 LMI 접근법)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1197-1200
    • /
    • 2010
  • The problem of designing a nonlinear sliding surface for an uncertain system is considered. The proposed sliding surface comprises a linear time invariant term and an additional time varying nonlinear term. It is assumed that a linear sliding surface parameter matrix guaranteeing the asymptotic stability of the sliding mode dynamics is given. The linear sliding surface parameter matrix is used for the linear term of the proposed sliding surface. The additional nonlinear term is designed so that a Lyapunov function decreases more rapidly. By including the additional nonlinear term to the linear sliding surface parameter matrix we obtain a nonlinear sliding surface such that the speed of responses is improved. We also give a switching feedback control law inducing a stable sliding motion in finite time. Finally, we give an LMI-based design algorithm, together with a design example.

Robust Backstepping control of IPMSM Using PID Integral Sliding Mode (PID 적분슬라이딩모드를 이용한 IPMSM의 강인한 백스테핑제어에 관한 연구)

  • Kim, Min-Chan;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung;Park, Seung-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1874-1882
    • /
    • 2015
  • In this paper, robust backstepping controller for IPMSM is proposed based on the PID integral sliding mode control. Because of the unmatching condition of load, the sliding mode control is difficult to be used for IPMSM without backstepping. However, the backstepping control has the difficulty of deriving error dynamics which is derived by differentiating the previous input. This difficulty is avoided by adopting PID as a nominal controller for the integral sliding mode control. The proposed controller can be achieved easily by adding integral sliding controller to the conventional PID controller.

Optimal Sliding Mode Control of Anti-Lock Braking System

  • Ebrahimirad, H.;Yazdanpanah, M. J.;Kazemi, R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1608-1611
    • /
    • 2004
  • Anti-lock brake systems (ABS) are being increasingly used in a wide range of applications due to safety. This paper deals with a high performance optimal sliding mode controller for slip-ratio control in the ABS. In this approach a sliding surface square is considered as an appropriate cost function. The optimum brake torque as a system input is determined by minimizing the cost function and used in the controller. Simulation results reveal the effectiveness of the proposed sliding mode controller.

  • PDF

Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control

  • Kim, Byeongil;Washington, Gregory N.;Yoon, Hwan-Sik
    • Smart Structures and Systems
    • /
    • v.11 no.6
    • /
    • pp.623-635
    • /
    • 2013
  • This paper investigates application of a control algorithm called model predictive sliding mode control (MPSMC) to active vibration suppression of a cantilevered aluminum beam. MPSMC is a relatively new control algorithm where model predictive control is employed to enhance sliding mode control by enforcing the system to reach the sliding surface in an optimal manner. In previous studies, it was shown that MPSMC can be applied to reduce hysteretic effects of piezoelectric actuators in dynamic displacement tracking applications. In the current study, a cantilevered beam with unknown mass distribution is selected as an experimental test bed in order to verify the robustness of MPSMC in active vibration control applications. Experimental results show that MPSMC can reduce vibration of an aluminum cantilevered beam at least by 29% regardless of modified mass distribution.

Adaptive Sliding Mode Control of Nonlinear Systems Using Neural Network and Disturbance Estimation Technique (신경망과 외란 추정 기법을 이용한 비선형 시스템의 적응 슬라이딩 모드 제어)

  • Lee, Jae-Young;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1759-1760
    • /
    • 2008
  • This paper proposes a neural network(NN)-based adaptive sliding mode controller for discrete-time nonlinear systems. By using disturbance estimation technique, a sliding mode controller is designed, which forces the sliding variable to be zero. Then, NN compensator with hidden-layer-to-output-layer weight update rule is combined with sliding mode controller in order to reduce the error of the estimates of both disturbances and nonlinear functions. The whole closed loop system rejects disturbances excellently and is proved to be ultimately uniformly bounded(UUB) provided that certain conditions for design parameters are satisfied.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller (퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어)

  • Sung, Kum-Gil;Cho, Jae-Wan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.8 s.113
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Saturated Sliding Mode Control of SDOF System under Earthquake Leadings (지진을 받는 단자유도 진동계의 포화 슬라이딩 모드 제어)

  • 민경원;이상현;이영철;이승준;박민규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.477-484
    • /
    • 2003
  • Recently, sliding mode control(SMC) method has been investigated for control of building structures under earthquake loadings. SMC keeps responses of a structure in sliding surface while the structure is stable. This control method uses both linear controller and nonlinear controller such as bang-bang controller. This paper presents vibration control of a structure using saturated sliding mode controller, whose maximum conrtol force is limited. The effectiveness of SMC method with controler saturation is investigated based on two performance evaluation criteria: root mean square(RMS) and maximum values of floor drifts and accelerations. Simulation results indicate that SMC method is effective in reduction of displacement and acceleration utilizing the saturated controller's capacity efficiently.

  • PDF

Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots (이동 로봇의 추종 제어를 위한 이중 슬라이딩 표면에 기반한 슬라이딩 모드 제어)

  • Lee, Jun Ku;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2013
  • This paper proposes a double sliding surfaces based on a sliding mode control for a tracking control of nonholonomic mobile robots in the Cartesian coordinates. In order to remove sliding surface constraints, we design the additional sliding surface for the heading angle with respect to the newly defined coordinates. Then, we define the switching law based on the posture error to combine the designed sliding surface with the previous one. By using the double sliding surfaces and the switching law, we obtain the control law for arbitrary trajectories. It is proved that the position tracking error and the heading direction error asymptotically converge to zero, respectively, with the Lyapunov stability theory. Finally, through computer simulations, we demonstrate the effectiveness of the proposed control system.

Direct Adaptive Fuzzy Sliding Mode Control for Under-actuated Uncertain Systems

  • Su, Shun-Feng;Hsueh, Yao-Chu;Tseng, Cio-Ping;Chen, Song-Shyong;Lin, Yu-San
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.240-250
    • /
    • 2015
  • The development of the control algorithms for under-actuated systems is important. Decoupled sliding mode control has been successfully employed to control under-actuated systems in a decoupling manner with the use of sliding mode control. However, in such a control scheme, the system functions must be known. If there are uncertainties in those functions, the control performance may not be satisfactory.In this paper, the direct adaptive fuzzy sliding mode control is employed to control a class of under-actuated uncertain systems which can be regarded as a combination of several subsystems with one same control input. By using the hierarchical sliding control approach, a sliding control law is derived so as to make every subsystem stabilized at the same time. But, since the system considered is assumed to be uncertain, the sliding control law cannot be readily facilitated. Therefore, in the study, based on Lyapunov stable theory a fuzzy compensator is proposed to approximate the uncertain part of the sliding control law. From those simulations, it can be concluded that the proposed compensator can indeed cope with system uncertainties. Besides, it can be found that the proposed compensator also provide good robustness properties.