• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.038 seconds

Adaptive Sliding Mode Control for Nonholonomic Mobile Robots with Model Uncertainty and External Disturbance (모델 불확실성과 외란이 있는 이동 로봇을 위한 적응 슬라이딩 모드 제어)

  • Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1644-1645
    • /
    • 2007
  • This paper proposes an adaptive sliding mode control method for trajectory tracking of nonholonomic mobile robots with model uncertainties and external disturbances. The kinematic model represented by polar coordinates are considered to design a robust control system. Wavelet neural networks (WNNs) are employed to approximate arbitrary model uncertainties in dynamics of the mobile robot. From the Lyapunov stability theory, we derive tuning algorithms for all weights of WNNs and prove that all signals of an adaptive closed-loop system are uniformly ultimately bounded.

  • PDF

Robust control of a flexible manipulator with artificial pneumatic muscle actuators (유연한 공압인공근육로봇의 강건제어)

  • 박노철;박형욱;박영필;정승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1704-1707
    • /
    • 1997
  • In this work, position and vibratiion control of a two-link manipulator with one flexible link, which an unkoun but bounded payload mass and two pair of artificial muscle-type penumatic actuators, are investgated. A flexible link robot has advantages over a figid link robot in the sense that it is much safer when it cones into contact with its environment, including humans. Furthermore, for the sake of safety, it would be more desirabel if an actuator could deliver required force while maintaining proper compliance. An artificial muscle-type penumatic actuator is adequate for such cases. In this study, a controller based on singular perturbation method, adaptive and sliding mode contro, and .mu.-synthesis is developed. The effectiveness of the proposed control scheme is confirmed through simulations and experiments.

  • PDF

Robustness Improvement of EKF by using Sliding Mode (슬라이딩모드를 이용한 확장형 칼만필터의 강인성 향상)

  • Kim, Tae-Won;Ha, Dong-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1866-1867
    • /
    • 2006
  • In this paper, a robust Extended Kalman filter is proposed by introducing a new sliding mode surface. This filter can be used for the system with a matching condition The new state estimater is designed for stochastic systems with bounded uncertainties

  • PDF

A Study on Design of Sliding Mode Control-based Fuzzy Control (슬라이딩 모드 제어에 기반한 퍼지 제어기 설계에 관한 연구)

  • Jang, Byeong-Hun;Ko, Jae-Ho;Yu, Chag-Wan;Bae, Young-Chul;Yim, Wha-Y
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.536-538
    • /
    • 1997
  • In this paper, a sliding mode control-based fuzzy controller is suggested. It is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. An inverted pendulum is effectively controlled by the proposed method in spite of existing model uncertanties and parameter disturbances.

  • PDF

An On-Line Adaptive Control of Underwater Vehicles Using Neural Network

  • Kim, Myung-Hyun;Kang, Sung-Won;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2004
  • All adaptive neural network controller has been developed for a model of an underwater vehicle. This controller combines a radial basis neural network and sliding mode control techniques. No prior off-line training phase is required, and this scheme exploits the advantages of both neural network control and sliding mode control. An on-line stable adaptive law is derived using Lyapunov theory. The number of neurons and the width of Gaussian function should be chosen carefully. Performance of the controller is demonstrated through computer simulation.

Fault Tolerant Control Strategy for Four Wheel Steer-by-Wire Systems (4륜 조향을 이용한 Steer-by-Wire 시스템의 고장 허용 제어 전략)

  • Seonghun Noh;Baek-soon Kwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • This paper presents a fault tolerant control strategy for Steer-by-Wire (SbW) systems. Among many problems to be solved before commercialization of SbW systems, maintaining reliability and fault tolerance in such systems are the most pressing issues. In most previous studies, dual steering motors are used to achieve actuation redundancy. However, relatively few studies have been conducted to introduce fault tolerant control strategies using rear wheel steering system. In this work, an actuator fault in front wheel steering is compensated by active rear wheel steering. The proposed fault tolerant control algorithm consists of disturbance observer and sliding mode control. The fault tolerant control performance of the proposed approach is validated via computer simulation studies with Carsim vehicle dynamics software and MATLAB/Simulink.

Adaptive Fuzzy Sliding Mode Control of Brushless DC Motor (브러시리스 DC 모터의 적응퍼지 슬라이딩 모드 제어)

  • Lee, Jong-Ho;Kim, Sung-Tae;Kim, Young-Tas
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.647-649
    • /
    • 2000
  • Brushless DC motors are widely used in many industrial fields as an actuator of robot and driving power motors of electrical vehicle. In this paper adaptive fuzzy sliding mode scheme is developed for velocity control of brushless DC motor. The proposed scheme does not require an accurate dynamic model. yet it guarantees asymptotic trajectory tracking despite torque variations. Numerical simulation and DSP-based experimental works for velocity control of brushless DC motor are carried out.

  • PDF

Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors (직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어)

  • Nam, Kanghyun;Eum, Sangjune
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

Soft Start Method of V2G System using Sliding Mode Controller (슬라이딩모드 제어를 이용한 Vehicle to Grid 시스템의 초기구동)

  • Kim, Heon-Hee;Lee, Hee-Jun;Jung, Chul-Ho;Kim, Jin-Hong;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.165-166
    • /
    • 2011
  • 양방향 AC/DC 컨버터를 이용하여 EV배터리를 충전하거나 계통으로 전력을 보낼 때 PI제어기를 사용하면 임피던스를 예측할 수 없으므로 초기 구동시 오버슈트가 발생하여 회로에 스트레스가 발생한다. 본 논문에서는 Sliding Mode Controller (SMC)를 이용하여 계통으로 전력을 전달하는 알고리즘으로 소프트 스타트를 하는 알고리즘을 제안하였다. 시뮬레이션을 통하여 회로를 구성하고 제안한 제어 방법의 성능을 확인하였다.

  • PDF

A Design of Full-Digitalized IM Controller Using Sliding Mode Control Algorithm (슬라이딩 모드 제어기법을 이용한 유도 전동기의 완전 디지털 제어기 설계)

  • Kang, M.H.;Kim, N.J.;Yoo, J.Y.;Park, G.T.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.360-362
    • /
    • 1994
  • This paper presents a design and implementation of DSP-based full-digitalized sliding mode controller(SMC) for an induction motor(IM) fed by voltage source inverter(VSI) with intelligent power module(IPM). By using SMC with load torque observer, we can obtain improved control performances, i.e., robustness, high precision and low chattering. Furthermore, this paper emploies space vector modulation (SVM) method which is implemented to minimize hard ware configuration and to obtain modulation flexibility along with only DSP software operation.

  • PDF