• Title/Summary/Keyword: the semigroup $D^*/U$

Search Result 5, Processing Time 0.019 seconds

THE CLASS GROUP OF D*/U FOR D AN INTEGRAL DOMAIN AND U A GROUP OF UNITS OF D

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.189-196
    • /
    • 2009
  • Let D be an integral domain, and let U be a group of units of D. Let $D^*=D-\{0\}$ and ${\Gamma}=D^*/U$ be the commutative cancellative semigroup under aU+bU=abU. We prove that $Cl(D)=Cl({\Gamma})$ and that D is a PvMD (resp., GCD-domain, Mori domain, Krull domain, factorial domain) if and only if ${\Gamma}$ is a PvMS(resp., GCD-semigroup, Mori semigroup, Krull semigroup, factorial semigroup). Let U=U(D) be the group of units of D. We also show that if D is integrally closed, then $D[{\Gamma}]$, the semigroup ring of ${\Gamma}$ over D, is an integrally closed domain with $Cl(D[{\Gamma}])=Cl(D){\oplus}Cl(D)$; hence D is a PvMD (resp., GCD-domain, Krull domain, factorial domain) if and only if $D[{\Gamma}]$ is.

  • PDF

G-REGULAR SEMIGROUPS

  • Sohn, Mun-Gu;Kim, Ju-Pil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.203-209
    • /
    • 1988
  • In this paper, we define a g-regular semigroup which is a generalization of a regular semigroup. And we want to find some properties of g-regular semigroup. G-regular semigroups contains the variety of all regular semigroup and the variety of all periodic semigroup. If a is an element of a semigroup S, the smallest left ideal containing a is Sa.cup.{a}, which we may conveniently write as $S^{I}$a, and which we shall call the principal left ideal generated by a. An equivalence relation l on S is then defined by the rule alb if and only if a and b generate the same principal left ideal, i.e. if and only if $S^{I}$a= $S^{I}$b. Similarly, we can define the relation R. The equivalence relation D is R.L and the principal two sided ideal generated by an element a of S is $S^{1}$a $S^{1}$. We write aqb if $S^{1}$a $S^{1}$= $S^{1}$b $S^{1}$, i.e. if there exist x,y,u,v in $S^{1}$ for which xay=b, ubv=a. It is immediate that D.contnd.q. A semigroup S is called periodic if all its elements are of finite order. A finite semigroup is necessarily periodic semigroup. It is well known that in a periodic semigroup, D=q. An element a of a semigroup S is called regular if there exists x in S such that axa=a. The semigroup S is called regular if all its elements are regular. The following is the property of D-classes of regular semigroup.group.

  • PDF

CHARACTERIZATIONS OF STABILITY OF ABSTRACT DYNAMIC EQUATIONS ON TIME SCALES

  • Hamza, Alaa E.;Oraby, Karima M.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.185-202
    • /
    • 2019
  • In this paper, we investigate many types of stability, like (uniform stability, exponential stability and h-stability) of the first order dynamic equations of the form $$\{u^{\Delta}(t)=Au(t)+f(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ and $$\{u^{\Delta}(t)=Au(t)+f(t,u),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ in terms of the stability of the homogeneous equation $$\{u^{\Delta}(t)=Au(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ where f is rd-continuous in $t{\in}{\mathbb{T}}$ and with values in a Banach space X, with f(t, 0) = 0, and A is the generator of a $C_0$-semigroup $\{T(t):t{\in}{\mathbb{T}}\}{\subset}L(X)$, the space of all bounded linear operators from X into itself. Here D(A) is the domain of A and ${\mathbb{T}}{\subseteq}{\mathbb{R}}^{{\geq}0}$ is a time scale which is an additive semigroup with property that $a-b{\in}{\mathbb{T}}$ for any $a,b{\in}{\mathbb{T}}$ such that a > b. Finally, we give illustrative examples.

VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS OF RETARDED TYPE

  • Dong, Qixiang;Li, Gang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.731-742
    • /
    • 2007
  • Let X be a Banach space, $A:D(A){\subset}X{\rightarrow}X$ the generator of a compact $C_0-semigroup\;S(t):X{\rightarrow}X,\;t{\geq}0$, D a locally closed subset in X, and $f:(a,b){\times}C([-q,0];X){\rightarrow}X$ a function of Caratheodory type. The main result of this paper is that a necessary and sufficient condition in order that D be a viable domain of the semi linear differential equation of retarded type $$u#(t)=Au(t)+f(t,u_t),\;t{\in}[t_0,\;t_0+T],{u_t}_0={\phi}{\in}C([-q,0];X)$$ is the tangency condition $$\limits_{h{\downarrow}0}^{lim\;inf\;h^{-1}d(S(h)v(0)+hf(t,v);D)=0}$$ for almost every $t{\in}(a,b)$ and every $v{\in}C([-q,0];X)\;with\;v(0){\in}D$.

COMMUTATIVITY OF PRIME GAMMA NEAR RINGS WITH GENERALIZED DERIVATIONS

  • MARKOS, ADNEW;MIYAN, PHOOL;ALEMAYEHU, GETINET
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.915-923
    • /
    • 2022
  • The purpose of the present paper is to obtain commutativity of prime Γ-near-ring N with generalized derivations F and G with associated derivations d and h respectively satisfying one of the following conditions:(i) G([x, y]α = ±f(y)α(xoy)βγg(y), (ii) F(x)βG(y) = G(y)βF(x), for all x, y ∈ N, β ∈ Γ (iii) F(u)βG(v) = G(v)βF(u), for all u ∈ U, v ∈ V, β ∈ Γ,(iv) if 0 ≠ F(a) ∈ Z(N) for some a ∈ V such that F(x)αG(y) = G(y)αF(x) for all x ∈ V and y ∈ U, α ∈ Γ.