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CHARACTERIZATIONS OF STABILITY OF ABSTRACT

DYNAMIC EQUATIONS ON TIME SCALES

Alaa E. Hamza and Karima M. Oraby

Abstract. In this paper, we investigate many types of stability, like

(uniform stability, exponential stability and h-stability) of the first order
dynamic equations of the form{

u∆(t) = Au(t) + f(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

and {
u∆(t) = Au(t) + f(t, u), t ∈ T, t > t0
u(t0) = x ∈ D(A),

in terms of the stability of the homogeneous equation{
u∆(t) = Au(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

where f is rd-continuous in t ∈ T and with values in a Banach space X,
with f(t, 0) = 0, and A is the generator of a C0-semigroup {T (t) : t ∈
T} ⊂ L(X), the space of all bounded linear operators from X into itself.

Here D(A) is the domain of A and T ⊆ R≥0 is a time scale which is an

additive semigroup with property that a − b ∈ T for any a, b ∈ T such
that a > b. Finally, we give illustrative examples.

1. Introduction and preliminaries

The theory of dynamic equations on time scales was introduced by Stefan
Hilger in 1988 [16], in order to unify continuous and discrete calculus [2, 17].
We refer the reader to the very interesting monographs [3, 4] for more details
about calculus on time scales. Concepts of stability are defined by various
ways and some of these definitions are not adapted to each other. This is
mainly due to what kind of exponential function authors used to define the
exponential stability of solutions of dynamic equations. Pötzsche [25] gave
the definition by the regular exponential function e−p(t−t0) (p is a positive
constant). Dacunha [9] defined the exponential stability in terms of e−p(t, t0)
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(p is a positive constant and −p ∈ R+) and LIU [18] introduced the definition
by the use of the generalized time scale exponential functions e	p(t, t0). Du
and Tien [11] characterized the exponential and uniformly exponential stability
for linear dynamic equations via solvability of non-regressive non-homogeneous
dynamic equations in the space of bounded rd-continuous functions. Choi, Koo
and Im [8] investigated the h-stability for nonlinear perturbed dynamic system

z∆(t) = A(t)z(t) + g(t, z(t)),

where g ∈ Crd(T× Rn,Rn) and g(t, 0) = 0 by using concept of Bihari type in-
equality on time scales and the unified time scale quadratic Lyapunov functions.
Doan, Kalauch and Siegmund [10] established necessary and sufficient condi-
tions for the existence of uniform exponential stability and characterized the
uniform exponential stability of a system by the spectrum of its matrix. Choi,
Goo and Koo [5] investigated the h-stability for dynamic systems with non-
regressivity condition in terms of transition matrix. The notion of h-stability
was introduced by Pinto [24]. For detailed results about h-stability for linear
dynamic equations on time scales, we refer the reader to the papers [5,8]. Choi
and Koo [7] studied the stability of solutions for linear dynamic equations on
time scales by using the concept of u∞-quasisimilarity and dynamic inequali-
ties. Mihiţ [20] studied the uniform h-stability of the evolution operators on
Banach spaces.

An operator A : T −→ L(X), the space of all bounded linear operators from
a Banach space X into itself, is called regressive if I +µ(t)A(t) is invertible for
every t ∈ T, and we say that

x∆(t) = A(t)x(t), t ∈ T

is regressive ifA is regressive. Here µ(t) is the graininess function on a time scale
T. We say that a real valued function p(t) on T is regressive (resp. positively
regressive) if 1 + µ(t)p(t) 6= 0 (resp. 1 + µ(t)p(t) > 0), t ∈ T. The family of
all regressive functions (resp. positively regressive functions) is denoted by R
(resp. R+ ).

It is well-known that if A ∈ BCrdR(T, L(X)), the space of all right dense
continuous and regressive bounded functions from T to L(X), then the homo-
geneous initial value problem (IVP)

(1) x∆(t) = A(t)x(t), t ∈ T, x(s) = xs ∈ X
has the unique solution

x(t) = eA(t, s)xs,

and the non-homogeneous IVP

(2) x∆(t) = A(t)x(t) + f(t), t ∈ T, x(s) = xs ∈ X
has the unique solution

x(t) = eA(t, s)xs +

∫ t

s

eA(t, σ(s))f(s) ∆s.
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Also any solution of the perturbed IVP

(3) x∆(t) = A(t)x(t) + f(t, x), t ∈ T, x(s) = xs ∈ X
satisfies the integral equation

x(t) = eA(t, s)xs +

∫ t

s

eA(t, σ(s))f(s, x(s)) ∆s.

Here eA(t, s) is the exponential operator function. For more details, see [13].
In [14], it was proved that the homogeneous equation

(4)

{
u∆(t) = Au(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

has a unique solution which is given by

x(t) = T (t− t0)x, t ≥ t0,
when A is the generator of a C0-semigroup of bounded linear operators {T (t) :
t ∈ T}, T ⊆ R≥0 is a time scale which is an additive semigroup with property
that a − b ∈ T for any a, b ∈ T such that a > b. Here, D(A) is the domain of
A. We dropped the condition of regressiveness and boundedness of A for the
existence and uniqueness [3] of solutions of the homogeneous IVP (4). Also,
many characterizations of stability of Equation (4) were obtained. Necessary
and sufficient conditions for a linear operator A to be the generator of a C0-
semigroup were derived in [15].

In this paper, we establish the existence and uniqueness of solutions of non-
homogeneous dynamic equations of the form

(5)

{
u∆(t) = Au(t) + f(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

and we prove that it is given by

u(t) = T (t− t0)x+

∫ t

t0

T (t− σ(s))f(s)∆s.

Also, we want to go further in stability of dynamic equations. We investigate
many types of stability, like (uniform stability, exponential stability and h-
stability) of both of Equation (5) and the equation

(6)

{
u∆(t) = Au(t) + f(t, u), t ∈ T, t > t0
u(t0) = x ∈ D(A),

in terms of the stability of the homogeneous equation (4).
When we consider the exponential operator function eA(t, s), we need the

concept of regressiveness since eA(t, s) is defined only for A(t) regressive. The
continuous dynamic equation (e.g. ordinary differential equations) are always
regressive since T = R has the graininess function µ(t) ≡ 0. However, non-
regressivity is always possible in discrete dynamic equations (e.g. difference
equations). In fact, if there is even one point in T with non zero graininess,
then nonregressivity is possible [19].
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Now, we introduce some definitions of strongly continuous semigroups (C0-
semigroups) T = {T (t) : t ∈ T} ⊂ L(X), and its generator A, where T ⊆ R≥0

is a time scale which is an additive semigroup with property that a− b ∈ T for
any a, b ∈ T such that a > b. See [14,15,22].

Definition. A C0-semigroup T on X is a family of linear bounded operators
{T (t) : t ∈ T} ⊂ L(X), satisfying

(1) T (t+ s) = T (t)T (s) for every t, s ∈ T (the semigroup property).
(2) T (0) = I, (I is the identity operator on X).
(3) limt→0+ T (t)x = x (i.e., T (·)x : T −→ X is continuous at 0) for each

x ∈ X.

If in addition limt→0+ ‖T (t)− I‖ = 0, then T is called a uniformly continuous
semigroup.

Definition. We say that a linear operator A is the generator of T if

(7) Ax = lim
s−→0+

T (µ(t))x− T (s)x

µ(t)− s
, x ∈ D(A),

where the domain D(A) of A is the set of all x ∈ X for which the above limit
exists uniformly in t.

We refer the reader to [14, 15] for more details about the properties of a
C0-semigroup T and its generator A.

It is known that when a linear operator A is the generator of a C0-semigroup
of operators {T (t) : t ∈ R≥0} on X, the non-homogeneous IVP

(8)

{
x′(t) = Ax(t) + f(t), t > 0
x(0) = x ∈ D(A),

has the unique solution

x(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds, t ∈ R≥0,

provided that f : [0,∞[→ X is continuously differentiable on [0,∞[. See e.g.
[12,23]. The paper is organized as follows. In Section 2, we establish necessary
and sufficient conditions for the non-homogeneous IVP (5) to have a unique so-
lution, when A is the generator of a C0-semigroup T and f ∈ Crd = Crd(T, X),
the space of rd-continuous functions from T to X. Section 3 is devoted to
investigate the stability, uniform stability, exponential stability and h-stability
of the IVPs (5) and (6). Section 4 includes some illustrative examples.

2. The existence and uniqueness of solutions of the
non-homogeneous initial value problem

In this section we consider the non-homogeneous IVP

(9)

{
u∆(t) = Au(t) + f(t), t ∈ T
u(0) = x0,
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where f ∈ Crd and A is the generator of a C0-semigroup T . So, by Theorem
2.4 in [14] the corresponding homogeneous IVP of (9) has a unique solution

u(t) = T (t)x0 for every initial value x0 ∈ D(A).

Definition. A function u : T → X is a (classical) solution of (9) on T if
u ∈ C1

rd, u(t) ∈ D(A) for t ∈ T and (9) is satisfied on T.

Definition. If f ∈ Crd and T is a C0-semigroup generated by A, then we
define ∫ t

0

T (t− σ(s))f(s)∆s := lim
t́→t−

∫ t́

0

T (t− σ(s))f(s)∆s, t ∈ T.

The limit on the right-hand side exists by Cauchy Criteria.

Lemma 2.1. If f ∈ Crd, then any solution of (9) with initial value x ∈ X is
given by

(10) u(t) = T (t)x+

∫ t

0

T (t− σ(s))f(s)∆s.

Proof. Let u be a solution of (9). Then the function φ(s) = Ht(s)u(s) is
differentiable for s ∈]0, t[T, where Ht(s) = T (t− s) and

φ∆(s) = Ht(σ(s))u∆(s) +H∆
t (s)u(s)

= T (t− σ(s))[Au(s) + f(s)]− T (t− σ(s))Au(s)

= T (t− σ(s))f(s).(11)

Integrating (11) from 0 to t, we get (10). �

For every f ∈ Crd, the right-hand side of (10) is a rd-continuous function
on T. It is natural to consider it as a generalized solution of (9) even if it
is not differentiable and does not strictly satisfy the equation in the sense
of Definition 2.1. We therefore introduce the so called mild solutions in the
following definition.

Definition. Let x ∈ X and f ∈ Crd. The function u ∈ Crd given by

u(t) = T (t)x+

∫ t

0

T (t− σ(s))f(s)∆s, t ∈ T,

is called the mild solution of the IVP (9) on T.

We start with a general criterion for existence and uniqueness of solutions
of the IVP (9).

Theorem 2.2. Let A be the generator of a C0-semigroup T , f ∈ Crd and

(12) v(t) =

∫ t

0

T (t− σ(s))f(s)∆s, t ∈ T.

Assume one of the following conditions is satisfied;

(i) v(t) is rd-continuously differentiable on T.
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(ii) v(t) ∈ D(A) for t ∈ T and Av(t) is rd-continuous on T.

Then the IVP (9) has a unique solution u on T for every x ∈ D(A). Conversely,
if (9) has a solution u on T for some x ∈ D(A), then v satisfies both (i) and
(ii).

Proof. If the IVP (9) has a solution u for some x ∈ D(A), then this solution
is given by (10). Consequently v(t) = u(t) − T (t)x is differentiable for t ∈ T
as the difference of two differentiable functions and v∆(t) = u∆(t) − T (t)Ax
is obviously rd-continuous on T. Therefore (i) is satisfied. Also if x ∈ D(A),
T (t)x ∈ D(A), AT (t)x = T (t)Ax for t ∈ T [14, Theorem 2.2], and thereby
v(t) = u(t) − T (t)x ∈ D(A) for t ∈ T and Av(t) = Au(t) − AT (t)x = u∆(t) −
f(t)− T (t)Ax is rd-continuous on T. Thus also (ii) is satisfied.

On the other hand, for h > 0,

T (h)− T (µ(t))

h− µ(t)
v(t) =

1

h− µ(t)

[∫ t

0

T (t+ h− σ(s))f(s)∆s

−
∫ t

0

T (t+ µ(t)− σ(s))f(s)∆s

]
=

1

h− µ(t)

[∫ t+h

0

T (t+ h− σ(s))f(s)∆s

−
∫ t+µ(t)

0

T (t+ µ(t)− σ(s))f(s)∆s

−
∫ t+h

t

T (t+ h− σ(s))f(s)∆s

+

∫ t+µ(t)

t

T (t+ µ(t)− σ(s))f(s)∆s

]

=
v(t+ h)− v(t+ µ(t))

h− µ(t)

− 1

h− µ(t)

∫ t+h

t

T (t+ h− σ(s))f(s)∆s

+
1

h− µ(t)
µ(t)f(t).(13)

It is clear that the right-hand side of (13) has the limit v∆+

(t)−f(t) as h→ 0+.
If v(t) is rd-continuously differentiable on T, then it follows from (13) that
v(t) ∈ D(A) for t ∈ T, t > 0 and Av(t) = v∆(t) − f(t). This implies that
u(t) = T (t)x+ v(t) is the solution of the IVP (9) for x ∈ D(A). If v(t) ∈ D(A)
it follows from (13) that v(t) is differentiable from the right at t and the right

derivative v∆+

(t) of v satisfies v∆+

(t) = Av(t) + f(t). Since v∆+

(t) is rd-
continuous, v(t) is rd-continuously differentiable and v∆(t) = Av(t) + f(t).
Again, we obtain u(t) = T (t)x+ v(t) is the solution of (9) for x ∈ D(A). �
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As a consequence of the previous result, we can see the following:

(i) In the continuous case T = R≥0 [23], the solution (10) yields

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds.

(ii) In the discrete case T = hZ≥0, h > 0, the solution (10) yields

u(t) = T (t)x+

t−1∑
i=0

T (t− ih)f(ih).

3. Stability of abstract initial value problems

In this section, we study many types of stability, like (uniform stability,
exponential stability and h-stability) of the non-homogeneous IVP

CP (f) :

{
u∆(t) = Au(t) + f(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

in terms of the stability of homogeneous IVP

CP (0) :

{
u∆(t) = Au(t), t ∈ T, t > t0
u(t0) = x ∈ D(A),

where f ∈ Crd and A is the generator of a C0-semigroup T . In [14], we studied
many types of stability of CP (0).

The definitions of the types of stability of the dynamic equations of the form

(14) x∆(t) = F (t, x), x(t0) = x0 ∈ X, t, t0 ∈ T

are presented, where F : T × X → X is rd-continuous in the first argument
with F (t, 0) = 0. See [5, 6, 9, 14,20,21].

Definition. Eq. (14) is said to be stable if, for every t0 ∈ T and for every
ε > 0, there exists a δ = δ(ε, t0) > 0 such that, for any two solutions x(t) =
x(t, t0, x0) and x(t) = x(t, t0, x0) of Eq. (14), the inequality ‖x0 − x0‖ < δ
implies ‖x(t)− x(t)‖ < ε for all t ≥ t0, t ∈ T.

Definition. Eq. (14) is said to be uniformly stable if, for each ε > 0, there
exists a δ = δ(ε) > 0 independent on any initial point t0 such that, for any two
solutions x(t) = x(t, t0, x0) and x(t) = x(t, t0, x0) of Eq. (14), the inequality
‖x0 − x0‖ < δ implies ‖x(t)− x(t)‖ < ε for all t ≥ t0, t ∈ T.

Definition. Eq. (14) is said to be exponentially stable if there exist α > 0
with −α ∈ R+ and γ : T × R≥0 → R+ which is rd-continuous in the first
argument and continuous in the second argument such that, any solution x(t) =
x(t, t0, x0) of Eq. (14) satisfies ‖x(t)‖ ≤ γ(t0, ‖x0‖)e−α(t, t0) for all t ≥ t0,
t ∈ T.

Definition. Eq. (14) is said to be uniformly exponentially stable if γ is inde-
pendent of t0 ∈ T.
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Definition. Let h : T → R be a positive bounded function. We say that
Eq. (14) is h-stable if there exists γ : T × R≥0 → R+ which is rd-continuous
in the first argument and continuous in the second argument such that any
solution x(t) = x(t, t0, x0) of Eq. (14) satisfies

‖x(t, t0, x0)‖ ≤ γ(t0, ‖x0‖)h(t)h(t0)−1, t ≥ t0;

(here h(t)−1 = 1
h(t) ).

Definition. Eq. (14) is called uniformly h-stable if γ is independent of t0 ∈ T.

Theorem 3.1. The following statements are equivalent:

(i) CP (0) is stable.
(ii) For every ε > 0 and t0 ∈ T there exists δ = δ(t0, ε) > 0 such that for

any solution x(t) = x(t, t0, x0) of CP (0), we have

‖x0‖ < δ =⇒ ‖x(t)‖ < ε;

(iii) {‖T (t− t0)‖ : t ∈ T, t ≥ t0} is bounded for every t0 ∈ T.
(iv) CP (0) is uniformly stable.
(v) There exists γ > 0 such that for every t0 ∈ T and for any solution

x(t) = x(t, t0, x0) of CP (0), we have

‖x(t)‖ ≤ γ‖x0‖, t ≥ t0, t ∈ T.

(vi) CP (f) is uniformly stable, for every f ∈ Crd.
(vii) CP (f) is stable, for every f ∈ Crd.

Proof. See [14, Lemmas 4.1, 4.2 and Theorem 4.3] for the proof of the equiva-
lence (i)-(iv).

(iv)⇒(v) Assume that CP (0) is uniformly stable. Let ε > 0. There exists
δ = δ(ε) independent on any initial point t0 ∈ T such that for any two solutions
x(t) = x(t, t0, x0) and x(t) = x(t, t0, x0) of CP (0) with initial values x0, x0 ∈
D(A), the inequality ‖x0 − x0‖ < δ implies ‖x(t)− x(t)‖ < ε, t ≥ t0, t ∈ T.

Now, let ε = 1. There is δ > 0 such that for any t0 ∈ T and for any solution
y(t) = y(t, t0, y0) of CP (0), we have

‖y0‖ < δ =⇒ ‖y(t)‖ < 1, t ≥ t0, t ∈ T.

Let t0 ∈ T, 0 6= x0 ∈ D(A) and y0 = δx0

2‖x0‖ . We have ‖y0‖ < δ, which implies

‖y(t, t0, y0)‖<1, namely, ‖ δ
2‖x0‖T (t−t0)x0‖ < 1, and so ‖T (t−t0)x0‖ < 2

δ ‖x0‖.
Take γ = 2

δ . Consequently,

‖x(t)‖ ≤ γ‖x0‖, t ≥ t0, t ∈ T.

(v)⇒(vi) Suppose that there is γ > 0 such that for any solution x(t) =
x(t, t0, x0) of CP (0), we have

‖T (t− t0)x0‖ ≤ γ‖x0‖.
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Let ε > 0. Take δ = ε
γ . For any t0 ∈ T, x0, x0 ∈ D(A) such that ‖x0−x0‖ < δ,

we have

‖xf (t)− xf (t)‖ = ‖T (t− t0)(x0 − x0)‖ ≤ γ‖x0 − x0‖

=
ε

δ
‖x0 − x0‖ < ε, t ≥ t0, t ∈ T.

Therefore, CP (f) is uniformly stable.
(vi)=⇒(vii) This implication can be obtained directly by the definition.
(vii)=⇒(i) This implication can be obtained directly, taking f ≡ 0. �

Theorem 3.2. The following statements are true.

(i) CP (0) is exponentially stable if and only if there exists α > 0 with
−α ∈ R+ and there exists γ ∈ Crd(T,R+) such that

‖T (t)‖ ≤ γ(t0)e−α(t+ t0, t0), t ∈ T.
(ii) CP (0) is uniformly exponentially stable if and only if the exists α > 0

with −α ∈ R+ and there exists a constant γ > 0 such that for any
t0 ∈ T,

‖T (t)‖ ≤ γe−α(t+ t0, t0), t ∈ T.

Proof. See [14, Theorem 6.3] for the proof of (i). The proof of (ii) can be
preformed in a similar way. �

In the following result we show that the exponential stability of CP (0) is a
sufficient condition for the boundedness of CP (f), where f ∈ BCrd.

Theorem 3.3. If CP (0) is exponentially stable, then for every f ∈ BCrd, the
solution xf (·) of CP (f) belongs to BCrd.

Proof. Assume CP (0) is exponentially stable. Then there exist α > 0 with
−α ∈ R+ and γ ∈ Crd(T,R+) such that

‖T (t)‖ ≤ γ(t0)e−α(t+ t0, t0), t ≥ t0, t0, t ∈ T.
For every function f ∈ BCrd, the solution of CP (f) with initial value x0 ∈
D(A) is given by

xf (t) = T (t− t0)x0 +

∫ t

t0

T (t− σ(s))f(s)∆s.

This implies

‖xf (t)‖ ≤ ‖T (t− t0)x0‖+ ‖
∫ t

t0

T (t− σ(s))f(s)∆s‖.

We have

‖
∫ t

t0

T (t− σ(s))f(s)∆s‖ ≤
∫ t

t0

‖T (t− σ(s)‖‖f(s)‖∆s

≤ γ‖f‖∞
∫ t

t0

e−α(t, σ(s))∆s
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=
γ‖f‖∞
α

(1− e−α(t, t0)) ≤ γ‖f‖∞
α

.

Therefore,

‖xf (t)‖ ≤ γe−α(t, t0)‖x0‖+
γ‖f‖∞
α

.

Hence, noting that e−α(t, t0)→ 0 as t→∞ [18], it follows the boundedness of
xf (·). �

Theorem 3.4. Let A be the generator of a C0-semigroup T on X. Then the
following statements are equivalent.

(i)
∫∞

0
‖T (s)x‖p∆s <∞, 1 ≤ p <∞ for every x ∈ X.

(ii) limt→∞ ‖T (t)x‖ = 0 for every x ∈ X.
(iii) CP (0) is uniformly exponentially stable.

Proof. (i)⇒(ii) Since T is a C0-semigroup on T, then there are constants
M ≥ 1 and ω > 0 such that ‖T (t)‖ ≤ Meω(t, 0) (see [15]). We assume that
limt→∞ ‖T (t)x‖ 6= 0. Then there are x ∈ X, δ > 0 and tj → ∞ such that
‖T (tj)x‖ ≥ δ. We can assume that tj+1 − tj > 1

ω . Set Ij = [tj − 1
ω , tj ]T. Then

the intervals {Ij} are disjoint. Indeed, let x ∈ Ij ∩ Ij+1, then

tj −
1

ω
≤ x ≤ tj , tj+1 −

1

ω
≤ x ≤ tj+1.

Hence, tj+1 − tj − 1
ω ≤ 0, this is a contradiction. Also, for t ∈ Ij we have

‖T (t)x‖ ≥ δ
Me . Indeed,

δ ≤ ‖T (tj)x‖ ≤ ‖T (tj − t)‖‖T (t)x‖,

it follows that ‖T (t)x‖ ≥ δ
‖T (tj−t)‖ . But ‖T (tj − t)‖ ≤Meω(tj , t) ≤Meω(tj−t)

≤Me. Then ‖T (t)x‖ ≥ δ
Me . Therefore,∫ ∞

0

‖T (t)x‖p∆t ≥
∞∑
j=1

∫ tj

tj− 1
ω

‖T (t)x‖p∆t ≥ (
δ

Me
)p
∞∑
j=1

1

ω
=∞,

this is a contradiction. Therefore limt→∞ ‖T (t)x‖ = 0 for every x ∈ X.
(ii)⇒(iii) Condition (ii) and the uniform boundedness Theorem insure the

boundedness of {‖T (t)‖ : t ∈ T}. To show (iii), we assume that ‖T (t)‖ ≤
M, t ∈ T for some M ≥ 1. Let 0 < η < 1

M . For x ∈ X define θx(η) by

θx(η) = sup{t ∈ T : ‖T (s)x‖ ≥ η‖x‖, s ∈ [0, t]T}.

Since ‖T (t)x‖ → 0 as t → ∞, θx(η) is finite and positive for every x ∈ X.
Therefore, θx(η) < t1. For t ∈ Tt1 , we have

(15) ‖T (t)x‖ ≤ ‖T (t− t1)‖‖T (t1)x‖ ≤Mη‖x‖.

Set β = Mη, which is less than 1. Inequality (15) implies that

‖T (t)‖ ≤ β < 1, t ∈ Tt1 .
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Finally, fix t2 ∈ Tt1 , and let ν = −1
t2

log β > 0. Let t ∈ T, then t = nt2 + s for

some n ∈ Z≥0, and s ∈ [0, t2]T. In view of eνt = β−
t
t2 , we obtain

‖T (t)‖ ≤ ‖T (s)‖‖T (nt2)‖ ≤M‖T (t2)‖n ≤Mβn =
M

β
βn+1 ≤M3β

t
t2

= M3e
−νt ≤M3e	ν(t, 0) ≤M3e−α(t, 0),

where α = ν
1+νµ , M3 ≥ 1

η .

(iii)⇒(i) Assume that CP (0) is uniformly exponentially stable. Then by
Theorem 3.2(ii), there exists α > 0 with −α ∈ R+ and there exists γ > 0
such that for any t0 ∈ T, ‖T (t)‖ ≤ γe−α(t + t0, t0) ≤ γe−αt, t ∈ T see [18].
Therefore, for 1 ≤ p <∞∫ ∞

0

‖T (s)x‖p∆s ≤ γp‖x‖p
∫ ∞

0

e−αps∆s <∞.
�

In the following result we establish a necessary and sufficient condition for
CP (0) to be h-stable.

Theorem 3.5. Let h : T → R be a positive bounded function on T. CP (0) is
h-stable if and only if there exists γ ∈ Crd(T,R+) such that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T.

Proof. Let CP (0) be h-stable. Then there is γ1 ∈ Crd(T×R≥0,R+) such that
for any solution x(t) = T (t − t0)x of CP (0) with initial value x ∈ D(A), we
have

‖T (t− t0)x‖ ≤ γ1(t0, ‖x‖)h(t)h(t0)−1, t ≥ t0, t ∈ T.
Using the density of D(A) in X and Corollary 2.3 in [14], we obtain

‖T (t− t0)x‖ ≤ γ1(t0, ‖x‖)h(t)h(t0)−1, x ∈ X, t ≥ t0, t ∈ T.

This implies that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T,

where γ(t0) = γ1(t0, 1). Conversely, assume that there exists γ ∈ Crd(T,R+)
such that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T.
Let x(t, t0, x0) = T (t − t0)x0 be any solution of CP (0) with initial value x0 ∈
D(A). Then

‖x(t)‖ = ‖T (t− t0)x0‖
≤ ‖T (t− t0)‖‖x0‖
≤ γ(t0)‖x0‖h(t)h(t0)−1, t ≥ t0, t ∈ T.

Therefore, CP (0) is h-stable. �
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Choi, Goo and Koo in [5] extended the concept of h-stability introduced by
Pinto [24] to dynamic equations. They investigated the h-stability for dynamic
equations CP (f) when A, f ∈ CrdR(T,Mn(R)), n ∈ N and Mn(R) is the family
of all n × n real matrices, with the nonregressivity condition on A. Du and
Tien in [11] studied the exponential stability for the perturbed equation

(16) x∆(t) = A(t)x(t) + f(t, x), t ∈ T,

when A(·) ∈ Crd(T+, L(X)) and f(t, x) : T+ ×X → X is rd-continuous in the
first argument with f(t, 0) = 0. Now, we extend these results concerning the
h-stability for Eq. (16) when A(t) = A is the generator of T .

The solution of the equation

(17) x∆(t) = Ax(t) + f(t, x), x(t0) = x0, t ≥ t0, t, t0 ∈ T,

through (t0, x0 ∈ D(A)) satisfies

(18) x(t) = T (t− t0)x0 +

∫ t

t0

T (t− σ(s))f(s, x(s))∆s.

Theorem 3.6. Let h : T → R be a positive bounded function on T. If the
following conditions are satisfied

(i) There is γ ∈ Crd(T,R+) such that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T,

(ii) ‖f(t, x)‖ ≤ L‖x‖ for all t ∈ T,

(iii) There exists β = β(t0) ≥ 0 such that
∫∞
t0

γ(σ(s))h(s)
h(σ(s)) ∆s ≤ β <∞,

then Eq. (17) is h-stable.

Proof. Let x(t) = T (t − t0)x0 be a solution of CP (0) with initial value x0 ∈
D(A), we have

‖T (t− t0)x0‖ ≤ γ(t0)‖x0‖h(t)h(t0)−1, t ≥ t0, t ∈ T.

For any t0 ∈ T, t ≥ t0, the solution of Eq. (17) satisfies

‖x(t)‖ ≤ ‖T (t− t0)x0‖+

∫ t

t0

‖T (t− σ(s))f(s, x(s))‖∆s

≤ γ(t0)‖x0‖h(t)h(t0)−1 + Lh(t)

∫ t

t0

γ(σ(s))h(σ(s))−1‖x(s)‖∆s.

Dividing by h(t) > 0 on both sides,

‖x(t)‖
h(t)

≤ γ(t0)
‖x0‖
h(t0)

+ L

∫ t

t0

γ(σ(s))h(s)

h(σ(s))

‖x(s)‖
h(s)

∆s.

By using Gronwall’s inequality on time scales [1], we obtain

‖x(t)‖
h(t)

≤ γ(t0)
‖x0‖
h(t0)

e
L
γ(σ(s))h(s)
h(σ(s))

(t, t0)
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≤ γ(t0)
‖x0‖
h(t0)

exp(L

∫ t

t0

γ(σ(s))h(s)

h(σ(s))
∆s)

≤ γ(t0)
‖x0‖
h(t0)

exp(L

∫ ∞
t0

γ(σ(s))h(s)

h(σ(s))
∆s)

≤ γ(t0)
‖x0‖
h(t0)

eLβ

for all t ≥ t0, t, t0 ∈ T. Thus

‖x(t)‖ ≤ d(t0, ‖x0‖)h(t)h(t0)−1, t ≥ t0,
where d(t0, ‖x0‖) = γ(t0)‖x0‖eLβ(t0), t0 ∈ T. Therefore Eq. (17) is h-stable.

�

Corollary 3.7. Let h : T→ R be a positive function such that both of h(t) and
h(t)/h(σ(t)) are bounded functions. If the following conditions are satisfied

(i) There is γ ∈ Crd(T,R+) such that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T,
(ii) ‖f(t, x)‖ ≤ L‖x‖ for all t ∈ T,
(iii) There exists β = β(t0) ≥ 0 such that

∫∞
t0
γ(σ(s))∆s ≤ β <∞,

then Eq. (17) is h-stable.

Theorem 3.8. Let h : T → R be a positive bounded function on T. If the
following conditions are satisfied

(i) There is γ ∈ Crd(T,R+) such that

‖T (t− t0)‖ ≤ γ(t0)h(t)h(t0)−1, t ≥ t0, t ∈ T,

(ii) There exists β = β(t0) ≥ 0 such that
∫∞
t0

‖f(s)‖γ(σ(s))
h(σ(s)) ∆s ≤ β <∞,

then CP (f) is h-stable.

Proof. Let x(t) be a solution of CP (f) with initial value x0 ∈ D(A). Then it
satisfies

‖x(t)‖ ≤ ‖T (t− t0)x0‖+

∫ t

t0

‖T (t− σ(s))f(s)‖∆s

≤ γ(t0)‖x0‖h(t)h(t0)−1 + h(t)

∫ t

t0

‖f(s)‖γ(σ(s))

h(σ(s))
∆s

≤ d(t0, ‖x0‖)h(t)h(t0)−1,

where d(t0, ‖x0‖) = γ(t0)‖x0‖ + β(t0)h(t0), t0 ∈ T. Therefore, CP (f) is h-
stable. �

Corollary 3.9. Suppose that CP (0) is uniformly h-stable. Then CP (f) is
uniformly h-stable if there exists a positive constant β such that for all t0 ∈ T,∫ ∞

t0

‖f(s)‖
h(σ(s))

∆s ≤ β.
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Remark 3.10. (1) If h(t) = e−α(t, 0) for some positive α with −α ∈ R+,
then the uniform h-stability of CP (0) coincides with the uniform exponential
stability of CP (0).

(2) If CP (0) is uniformly h-stable with h(t) = e−α(t, 0) for some positive α

with −α ∈ R+ and
∫∞
t0

‖f(s)‖
1−αµ(s)e−α(t0, s)∆s <∞ for each t0 ∈ T, then CP (f)

is uniformly exponentially stable.

Theorem 3.11. If the following conditions are satisfied:

(i) CP (0) is uniformly h-stable,
(ii) ‖f(t, x)‖ ≤ l(t)‖x‖, l ∈ Crd(T,R+),

(iii) There exists β ≥ 0 such that
∫∞
t0

l(s)h(s)
h(σ(s)) ∆s ≤ β,

then Eq. (17) is uniformly h-stable.

Proof. Let CP (0) be uniformly h-stable. Then there is a constant γ > 0 such
that for any solution x(t) = T (t− t0)x0 of CP (0) with initial value x0 ∈ D(A),
we have

(19) ‖T (t− t0)x0‖ ≤ γ‖x0‖h(t)h(t0)−1, t ≥ t0, t ∈ T.

Using formula (18) with inequality (19) and condition (ii), we obtain

‖x(t)‖ ≤ ‖T (t− t0)x0‖+

∫ t

t0

‖T (t− σ(s))f(s, x(s))‖∆s

≤ γ‖x0‖h(t)h(t0)−1 + γh(t)

∫ t

t0

l(s)h(σ(s))−1‖x(s)‖∆s.

Dividing by h(t) > 0 on both sides,

‖x(t)‖
h(t)

≤ γ ‖x0‖
h(t0)

+ γ

∫ t

t0

l(s)h(s)

h(σ(s))

‖x(s)‖
h(s)

∆s.

By using Gronwall’s inequality on time scales [1], we get

‖x(t)‖
h(t)

≤ γ ‖x0‖
h(t0)

e
γ
l(s))h(s)
h(σ(s))

(t, t0)

≤ γ ‖x0‖
h(t0)

eγβ

for all t ≥ t0, t, t0 ∈ T. Thus

‖x(t)‖ ≤ d1‖x0‖h(t)h(t0)−1, t ≥ t0,

where d1 = γeγβ > 0. Therefore Eq. (17) is uniformly h-stable. �

4. Illustrative examples

Example 4.1. Consider the IVP

(20)

{
u∆(t) = Au(t) + f(t), t ∈ T
u(0) = x0 ∈ D(A),
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where A =
(

0 0
0 −2

)
, f(t) =

(
2t−2

0

)
, t ∈ T and T = 1

2Z
≥0. The matrix A is

non-regressive and it is the generator of the C0-semigroup

T (t) = (I +
1

2
A)2t, t ∈ T,

then

T (t) =

(
1 0
0 0

)
, t ∈ 1

2
N.

Therefore Eq. (20) has the unique solution given by

u(t) = T (t)x0 +

∫ t

0

T (t− σ(s))f(s)∆s, x0 ∈ R2

=

(
1 0
0 0

)
x0 +

t−1∑
s=0

(
1 0
0 0

)(
2s− 2

0

)
=

(
1 0
0 0

)
x0 +

( ∑t−1
s=0 2s− 2

0

)
=

(
1 0
0 0

)
x0 +

(
t2 − 3t

0

)
.

Consequently, ‖T (t)‖ = 1, t ∈ T which implies that the system (20) is uniformly
stable.

Example 4.2. Consider the IVP (20) with A = ( 0 1
1 0 ) and f(t) =

(
e1(t,0)
e−1(t,0)

)
,

t ∈ T = Z≥0. The operator A is non-regressive and it is the generator of the
C0-semigroup

T (n) = (I +A)n = 2n
(

1 1
1 1

)
, n ∈ Z≥0.

Then Eq. (20) has the unique solution given by

u(t) = T (t)x0 +

∫ t

0

T (t− σ(s))f(s)∆s, x0 ∈ R2

= 2t
(

1 1
1 1

)
x0 +

t−1∑
s=0

2t−s−1

(
1 1
1 1

)(
2t

0

)

= 2t
(

1 1
1 1

)
x0 + 22t−1

t−1∑
s=0

2−s
(

1
1

)
= 2t

(
1 1
1 1

)
x0 + 2t(2t − 1)

(
1
1

)
.

Consequently, ‖T (t)‖ = 2t+1, which is unbounded. Therefore Eq. (20) is not
stable.
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Example 4.3. Consider the IVP

CP (f) :

{
u∆(t) = Au(t) + f(t), t0 < t, t ∈ T
u(t0) = x0,

where A =
(
− 1

2
1
2

0 −2

)
and f(t) =

(
e−1(t,0)

0

)
, t ∈ T = 1

2Z
≥0. The operator A is

non-regressive and it is the generator of the C0-semigroup

T (t− t0) = (I +
1

2
A)2(t−t0) = (

1

4
)2(t−t0)

(
3 1
0 0

)t
= (

3

4
)2(t−t0)

(
1 1

3
0 0

)
,

t > t0, t0, t ∈ T. Thus ‖T (t− t0)‖ =
√

10
3 ( 3

4 )2(t−t0) =
√

10
3 e− 1

2
(t, t0). Therefore

CP (0) is uniformly stable and uniformly exponentially stable. Consequently,

CP (f) is uniformly stable. Now, take h(t) = e− 1
2
(t, 0), γ >

√
10
3 . We have

‖T (t− t0)‖ ≤ γe− 1
2
(t, 0)e− 1

2
(0, t0) = γh(t)h(t0)−1, t > t0, t, t0 ∈ T.

Therefore CP (0) is uniformly h-stable. Consequently, CP (f) is uniformly h-
stable. Indeed, we have∑

s∈T

‖f(s)‖
h(σ(s))

=
∑
s∈T

‖f(s)‖
(1− 1

2µ(s))e− 1
2
(s, 0)

≤
∑
s∈T

4

3

e−1(s, 0)

e− 1
2
(s, 0)

=
∑
s∈T

4

3
e− 2

3
(s, 0)

=
4

3

∑
s∈T

(1− 1

3
)2s ≤ 4

3

∞∑
s=0

(
4

9
)s =

12

5
.

Hence CP(f) is uniformly exponentially stable by Remark 3.10(2).

Example 4.4. Consider the perturbed initial value problem:

(21) x∆(t) = Ax(t) + q(t)x(t), t ∈ T =
1

2
Z≥0,

where A =
(
− 1

2
1
2

0 −2

)
and q is a rd-continuous nonnegative function that satisfies∑

s∈T q(s) < +∞. We can see that condition (iii) of Theorem 3.11 holds.
Indeed, we have ∑

s∈T

q(s)h(s)

h(σ(s))
=
∑
s∈T

q(s)e− 1
2
(s, 0)

e− 1
2
(σ(s), 0)

=
∑
s∈T

q(s)e− 1
2
(s, 0)

(1− 1
2 ( 1

2 ))e− 1
2
(s, 0)

=
4

3

∑
s∈T

q(s) < +∞.
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Also, conditions (i)-(ii) of Theorem 3.11 hold. Therefore, Eq. (21) is h-stable.

Example 4.5. Consider the perturbed IVP

(22) x∆(t) = Ax(t) + f(t, x(t)), t ∈ Z≥0,

where A : l2 → l2 is an infinite matrix defined by A = (aij)i,j∈N, where

aij =

{
0, i 6= j

−1 +
√

(−1)i−1

(i−1)! i = j,

and f(t, x(t)) : Z≥0 × l2 → l2 is defined by f(t, x(t)) = ( 1
2 )tx(t). As usual

l2 = {(xn) :
∑∞
n=1 |xn|2 < ∞}. The operator A is the generator of the C0-

semigroup T (k) = (bkij)i,j∈N, where

bij =

{
0, i 6= j√

(−1)i−1

(i−1)! i = j.

So, ‖T (k)‖ ≤ e
1
2 . Therefore, CP (0) is uniformly h-stable with a constant

function h = e
1
2 and γ = e

1
2 . Also, we can see that condition (iii) of Theorem

3.11 holds. Indeed, we have∑
s∈T

( 1
2 )sh(s)

h(σ(s))
=
∑
s∈T

(
1

2
)s ≤

∞∑
s=0

(
1

2
)s =

1

1− 1
2

= 2.

Also, conditions (i)-(ii) in Theorem 3.11 hold. Therefore, Eq. (22) is uniformly
h-stable.
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