Browse > Article
http://dx.doi.org/10.4134/CKMS.c180004

CHARACTERIZATIONS OF STABILITY OF ABSTRACT DYNAMIC EQUATIONS ON TIME SCALES  

Hamza, Alaa E. (Department of Mathematics Faculty of Science University of Jeddah)
Oraby, Karima M. (Department of Mathematics and Computer Science Faculty of Science Suez University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.1, 2019 , pp. 185-202 More about this Journal
Abstract
In this paper, we investigate many types of stability, like (uniform stability, exponential stability and h-stability) of the first order dynamic equations of the form $$\{u^{\Delta}(t)=Au(t)+f(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ and $$\{u^{\Delta}(t)=Au(t)+f(t,u),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ in terms of the stability of the homogeneous equation $$\{u^{\Delta}(t)=Au(t),\;\;t{\in}{\mathbb{T}},\;t>t_0\\u(t_0)=x{\in}D(A),$$ where f is rd-continuous in $t{\in}{\mathbb{T}}$ and with values in a Banach space X, with f(t, 0) = 0, and A is the generator of a $C_0$-semigroup $\{T(t):t{\in}{\mathbb{T}}\}{\subset}L(X)$, the space of all bounded linear operators from X into itself. Here D(A) is the domain of A and ${\mathbb{T}}{\subseteq}{\mathbb{R}}^{{\geq}0}$ is a time scale which is an additive semigroup with property that $a-b{\in}{\mathbb{T}}$ for any $a,b{\in}{\mathbb{T}}$ such that a > b. Finally, we give illustrative examples.
Keywords
semigroups of operators; time scales; dynamic equations; h-stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. E. Hamza and M. A. Al-Qubaty, On the exponential operator functions on time scales, Adv. Dyn. Syst. Appl. 7 (2012), no. 1, 57-80.
2 C. Potzsche, S. Siegmund, and F. Wirth, A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1223-1241.   DOI
3 S. K. Choi, D. M. Im, and N. Koo, Stability of linear dynamic systems on time scales, Adv. Difference Equ. 2008 (2008), Art. ID 670203, 12 pp.
4 R. J. Marks, I. A. Gravagne, J. M. Davis, and J. J. Dacunha, Nonregressivity in switched linear circuits and mechanical systems, Math. Comput. Modelling 43 (2006), no. 11-12, 1383-1392.   DOI
5 C.-L. Mihit, On uniform h-stability of evolution operators in Banach spaces, Theory Appl. Math. Comput. Sci. 6 (2016), no. 1, 19-27.
6 B. B. Nasser, K. Boukerrioua, and M. A. Hammami, On the stability of perturbed time scale systems using integral inequalities, Appl. Sci. 16 (2014), 56-71.
7 K. M. Oraby, Asymptotic Behavior of Solutions of Dynamic Equations on Time Scales, M.SC thesis, Cairo University, 2012.
8 A. E. Hamza and K. M. Oraby, Stability of abstract dynamic equations on time scales, Adv. Difference Equ. 143 (2012), 15 pp.
9 A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
10 M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1984), no. 1-2, 161-175.   DOI
11 A. E. Hamza and K. M. Oraby, Semigroups of operators and abstract dynamic equations on time scales, Appl. Math. Comput. 270 (2015), 334-348.   DOI
12 S. Hilger, Ein Masskettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universitat Wurzburg, 1988.
13 S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), no. 1-2, 18-56.   DOI
14 A.-L. Liu, Boundedness and exponential stability of solutions to dynamic equations on time scales, Electron. J. Differential Equations 2007 (2007), No. 12, 14 pp.
15 R. Agarwal, M. Bohner, D. O'Regan, and A. Peterson, Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (2002), no. 1-2, 1-26.   DOI
16 B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in Qualitative theory of differential equations (Szeged, 1988), 37-56, Colloq. Math. Soc. Janos Bolyai, 53, North-Holland, Amsterdam, 1990.
17 S. K. Choi and N. Koo, Stability of linear dynamic equations on time scales, Discrete Contin. Dyn. Syst. 2009, Dynamical systems, differential equations and applications. 7th AIMS Conference, suppl., 161-170.
18 M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston, Inc., Boston, MA, 2001.
19 M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Besel, 2003.
20 S. K. Choi, Y. H. Goo, and N. Koo, h-stability of dynamic equations on time scales with nonregressivity, Abstr. Appl. Anal. 2008 (2008), Art. ID 632473, 13 pp.
21 S. K. Choi, N. Koo, and D. M. Im, h-stability for linear dynamic equations on time scales, J. Math. Anal. Appl. 324 (2006), no. 1, 707-720.   DOI
22 J. J. DaCunha, Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math. 176 (2005), no. 2, 381-410.   DOI
23 T. S. Doan, A. Kalauch, and S. Siegmund, Exponential stability of linear time-invariant systems on time scales, Nonlinear Dyn. Syst. Theory 9 (2009), no. 1, 37-50.
24 N. H. Du and L. H. Tien, On the exponential stability of dynamic equations on time scales, J. Math. Anal. Appl. 331 (2007), no. 2, 1159-1174.   DOI
25 K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 194, Springer-Verlag, New York, 2000.