• Title/Summary/Keyword: the refined theory

Search Result 283, Processing Time 0.032 seconds

A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates

  • Sellam, Souad;Draiche, Kada;Tlidji, Youcef;Addou, Farouk Yahia;Benachour, Abdelkader
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.157-174
    • /
    • 2020
  • In the present paper, a simple analytical model is developed based on a new refined parabolic shear deformation theory (RPSDT) for free vibration and buckling analysis of orthotropic rectangular plates with simply supported boundary conditions. The displacement field is simpler than those of other higher-order theories since it is modeled with only two unknowns and accounts for a parabolic distribution of the transverse shear stress through the plate thickness. The governing differential equations related to the present theory are obtained from the principle of virtual work, while the solution of the eigenvalue problem is achieved by assuming a Navier technique in the form of a double trigonometric series that satisfy the edge boundary conditions of the plate. Numerical results are presented and compared with previously published results for orthotropic rectangular plates in order to verify the precision of the proposed analytical model and to assess the impacts of several parameters such as the modulus ratio, the side-to-thickness ratio and the geometric ratio on natural frequencies and critical buckling loads. From these results, it can be concluded that the present computations are in excellent agreement with the other higher-order theories.

Finding Informative Genes From Microarray Gene Expression Data Using FIGER-test

  • Choi, Kyoung-Oak;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.707-711
    • /
    • 2007
  • Microarray gene expression data is believed to show the functions of living organism through the gene expression values. We have studied a method to get the informative genes from the microarray gene expression data. There are several ways for this. In recent researches to get more sophisticated and detailed results, it has used the intelligence information theory like fuzzy theory. Some methods are to add fudge factors to the significance test for more refined results. In this paper, we suggest a method to get informative genes from microarray gene expression data. We combined the difference of means between two groups and the fuzzy membership degree which reflects the variance of the gene expression data. We have called our significance test the Fuzzy Information method for Gene Expression data(FIGER). The FIGER calculates FIGER variation ratio and FIGER membership degree to show how strongly each object belongs to the each group and then it results in the significance degree of each gene. The FIGER is focused on the variation and distribution of the data set to adjust the significance level. Out simulation shows that the FIGER-test is an effective and useful significance test.

An Analysis on Teaching of Polyhedrons in Elementary Mathematics Textbooks (초등학교 수학 교과서에 제시된 다면체 관련 내용 분석)

  • Lee, Young Ji;Kim, Sung Joon
    • East Asian mathematical journal
    • /
    • v.30 no.4
    • /
    • pp.405-438
    • /
    • 2014
  • This study analyzed and discussed instruction methods of polyhedrons in elementary mathematics textbook by using the didactic transposition theory. By further segmenting instruction methods, we analyzed the period and order of teaching of polyhedrons, its definitions and presentation methods, and how instruction methods has changed so far. In elementary mathematics textbooks from the 1st to the 2007 revised curriculum, we choose the part where polyhedrons are introduced as the search-target, and analyzed instruction methods in these textbooks by using phenomenological description. The instruction period and order of polyhedrons were systemized when the system of Euclid geometry was introduced, considering the psychological condition of students, and the instruction period and order had been refined according to the curriculum. And methods of definition took into consideration both the academic systems and psychological situations. Also, the subject of learning has changed from textbook and teachers to students. Polyhedrons were connected to real life and students could build up their knowledge by themselves. Constructions were aimed at the understanding of meaning of contents, rather than at itself. Through these analyses, we have some suggestions on the teaching of polyhedrons in the elementary mathematics.

Reinforcement design of the top and bottom slabs of composite box girder with corrugated steel webs

  • Zhao, Hu;Gou, Hongye;Ni, Ying-Sheng;Xu, Dong
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.537-550
    • /
    • 2019
  • Korea and Japan have done a lot of research on composite girders with corrugated steel webs and built many bridges with corrugated steel webs due to the significant advantages of this type of bridges. Considering the demanding on the calculation method of such types of bridges and lack of relevant reinforcement design method, this paper proposes the spatial grid analysis theory and tensile stress region method. First, the accuracy and applicability of spatial grid model in analyzing composite girders with corrugated steel webs was validated by the comparison with models using shell and solid elements. Then, in a real engineering practice, the reinforcement designs from tensile stress region method based on spatial grid model, design empirical method and specification method are compared. The results show that the tensile stress region reinforcement design method can realize the inplane and out-of-plane reinforcement design in the top and bottom slabs in bridges with corrugated steel webs. The economy and precision of reinforcement design using the tensile stress region method is emphasized. Therefore, the tensile stress region reinforcement design method based on the spatial grid model can provide a new direction for the refined design of composite box girder with corrugated steel webs.

Capabilities of 1D CUF-based models to analyse metallic/composite rotors

  • Filippi, Matteo;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

  • Yahia, Sihame Ait;Atmane, Hassen Ait;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1143-1165
    • /
    • 2015
  • In this work, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed. Due to porosities, possibly occurring inside functionally graded materials (FGMs) during fabrication, it is therefore necessary to consider the wave propagation in plates having porosities in this study. The developed refined plate theories have fewer number of unknowns and equations of motion than the first-order shear deformation theory, but accounts for the transverse shear deformation effects without requiring shear correction factors. The rule of mixture is modified to describe and approximate material properties of the functionally graded plates with porosity phases. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and porosity volume fraction on wave propagation of functionally graded plate are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Unified Section and Shape Discrete Optimum Design of Planar and Spacial Steel Structures Considering Nonlinear Behavior Using Improved Fuzzy-Genetic Algorithms (개선된 퍼지-유전자알고리즘에 의한 비선형거동을 고려한 평면 및 입체 강구조물의 통합 단면, 형상 이산화 최적설계)

  • Park, Choon Wook;Kang, Moon Myung;Yun, Young Mook
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.385-394
    • /
    • 2005
  • In this paper, a discrete optimum design program was developed using the refined fuzzy-genetic algorithms based on the genetic algorithms and the fuzzy theory. The optimum design in this study can perform section and shape optimization simultaneously for planar and spatial steel structures. In this paper, the objective function is the weight of steel structures and the constraints are the design limits defined by the design and buckling strengths, displacements, and thicknesses of the member sections. The design variables are the dimensions and coordinates of the steel sections. Design examples are given to show the applicability of the discrete optimum design using the improved fuzzy-genetic algorithms in this study.

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

  • Belbachir, Nasrine;Draich, Kada;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Mohammadimehr, M.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2019
  • The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

Pre-service Teachers' Learning to Teach: Theory Into Practice

  • Kwak, Young-Sun;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.166-179
    • /
    • 2002
  • This study investigated preservice teachers' perceived constraints in implementing their ideal pedagogies and the influence of the teacher education program on their pedagogical beliefs changes. Unique features that the university-based coursework and field experiences had on preservice teachers' learning to teach were also explored. This preservice teacher education program employs constructivist aspects of teacher education and generates applications of constructivism to the practice of teaching. Major findings include: preservice teachers' having traditional pedagogy as the default, recovery of prior beliefs, constraints on implementing constructivist pedagogy, and being overly confident in themselves as teachers. With the influence of constructivist epistemology, these preservice teachers' pedagogical beliefs evolved and were refined over time as they incorporated various constructivist ideas. The benefits and influences of the M.Ed. program's theoretical coursework and the field experiences on these teachers' learning-to-teach experiences are addressed with rich data. The implications for teacher educators as well as for the instructional practices of preservice teacher education programs are discussed. Recommendations for future research are also presented.

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions

  • Karami, Behrouz;Shahsavari, Davood;Ordookhani, Ali;Gheisari, Parastoo;Li, Li;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.689-702
    • /
    • 2020
  • The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.