Browse > Article
http://dx.doi.org/10.12989/scs.2020.36.6.689

Dynamics of graphene-nanoplatelets reinforced composite nanoplates including different boundary conditions  

Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Shahsavari, Davood (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Ordookhani, Ali (Department of Civil Engineering, School of Science and Engineering, Sharif University of Technology, International Campus)
Gheisari, Parastoo (School of Mechanical Engineering, Shiraz University)
Li, Li (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology)
Eyvazian, Arameh (Institute of Research and Development, Duy Tan University)
Publication Information
Steel and Composite Structures / v.36, no.6, 2020 , pp. 689-702 More about this Journal
Abstract
The current study deals with the size-dependent free vibration analysis of graphene nanoplatelets (GNPs) reinforced polymer nanocomposite plates resting on Pasternak elastic foundation containing different boundary conditions. Based on a four variable refined shear deformation plate theory, which considers shear deformation effect, in conjunction with the Eringen nonlocal elasticity theory, which contains size-dependency inside nanostructures, the equations of motion are established through Hamilton's principle. Moreover, the effective material properties are estimated via the Halpin-Tsai model as well as the rule of mixture. Galerkin's mathematical formulation is utilized to solve the equations of motion for the vibrational problem with different boundary conditions. Parametrical examples demonstrate the influences of nonlocal parameter, total number of layers, weight fraction and geometry of GNPs, elastic foundation parameter, and boundary conditions on the frequency characteristic of the GNPs reinforced nanoplates in detail.
Keywords
free vibration; nanocomposites; reinforcement; Graphene nanoplatelet; boundary conditions;
Citations & Related Records
Times Cited By KSCI : 37  (Citation Analysis)
연도 인용수 순위
1 Karami, B., Shahsavari, D. and Janghorban, M. (2018), "A Comprehensive Analytical Study on Functionally Graded Carbon Nanotube-Reinforced Composite Plates", Aerosp. Sci. Technol., https://doi.org/10.1016/j.ast.2018.10.001.
2 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Elastic guided waves in fully-clamped functionally graded carbon nanotube-reinforced composite plates", Mater. Res. Express, 6(9), 0950a0959. https://doi.org/10.1088/2053-1591/ab3474
3 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.   DOI
4 Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.   DOI
5 Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852.   DOI
6 Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.   DOI
7 Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.   DOI
8 Panda, S.K. and Singh, B. (2013), "Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre", Aerosp. Sci. Technol., 29(1), 47-57. https://doi.org/10.1016/j.ast.2013.01.007.   DOI
9 Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H. and Wahab, M.A. (2017), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166, 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049.   DOI
10 Quaresimin, M., Schulte, K., Zappalorto, M. and Chandrasekaran, S. (2016), "Toughening mechanisms in polymer nanocomposites: From experiments to modelling", Compos. Sci. Technol., 123, 187-204. https://doi.org/10.1016/j.compscitech.2015.11.027.   DOI
11 Mehar, K. and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polymer Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.   DOI
12 Radic, N. and Jeremic, D. (2017), "A comprehensive study on vibration and buckling of orthotropic double-layered graphene sheets under hygrothermal loading with different boundary conditions", Compos. Part B: Eng., 128, 182-199. https://doi.org/10.1016/j.compositesb.2017.07.019.   DOI
13 Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.   DOI
14 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.   DOI
15 Khan, S.U., Li, C.Y., Siddiqui, N.A. and Kim, J.-K. (2011), "Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes", Compos. Sci. Technol., 71(12), 1486-1494. https://doi.org/10.1016/j.compscitech.2011.03.022.   DOI
16 Kim, K., Choe, K., Kim, S. and Wang, Q. (2018), "A modeling method for vibration analysis of cracked laminated composite beam of uniform rectangular cross-section with arbitrary boundary condition", Compos. Struct., https://doi.org/10.1016/j.compstruct.2018.10.006.
17 Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/scs.2017.25.6.693.   DOI
18 Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81 108-117. https://doi.org/10.1016/j.ast.2018.07.036.   DOI
19 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design. 116 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
20 Kumar, R., Dey, T. and Panda, S.K. (2019), "Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions", Steel Compos. Struct., 31(2), 187-199. https://doi.org/10.12989/scs.2019.31.2.187.   DOI
21 Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.   DOI
22 Mehar, K., Mishra, P. and Panda, S. (2020), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
23 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.   DOI
24 Baferani, A.H., Saidi, A. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.   DOI
25 Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control, 24(10), 1910-1926. https://doi.org/10.1177/1077546316672788'   DOI
26 Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457.   DOI
27 Shahsavari, D., Karami, B. and janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173.   DOI
28 Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.   DOI
29 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013. https://doi.org/10.1088/2053-1591/aa7d89.   DOI
30 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
31 Singh, V.K., Hirwani, C.K., Panda, S.K., Mahapatra, T.R. and Mehar, K. (2019), "Numerical and experimental nonlinear dynamic response reduction of smart composite curved structure using collocation and non-collocation configuration", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(5), 1601-1619. https://doi.org/10.1177/0954406218774362.   DOI
32 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.   DOI
33 Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mechanica, 231(3), 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.   DOI
34 Mehar, K. and Panda, S. (2015). "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Proceedings of the 5th National Conference on Processing and Characterization of Materials, https://doi:10.1088/1757-899X/115/1/012014.
35 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, https://doi.org/10.1080/15440478.2018.1503129.
36 Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.   DOI
37 Mehar, K. and Panda, S.K. (2016), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.   DOI
38 Mehar, K. and Panda, S.K. (2018). "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", Proceedings of the IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1088/1757-899X/338/1/012017.
39 Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. http://dx.doi.org/10.12989/anr.2019.7.3.181.   DOI
40 Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.   DOI
41 Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Thermal Stresses, 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.   DOI
42 Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.   DOI
43 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. https://doi.org/10.12989/sem.2018.68.6.721.   DOI
44 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227.   DOI
45 Canales, F. and Mantari, J. (2018), "Free vibration of thick isotropic and laminated beams with arbitrary boundary conditions via unified formulation and Ritz method", Appl. Math. Model., 61, 693-708. https://doi.org/10.1016/j.apm.2018.05.005.   DOI
46 Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.   DOI
47 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.   DOI
48 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
49 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018   DOI
50 Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.   DOI
51 Song, M., Yang, J. and Kitipornchai, S. (2018), "Bending and buckling analyses of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Part B: Eng., 134, 106-113. https://doi.org/10.1016/j.compositesb.2017.09.043   DOI
52 Tahouneh, V., Naei, M.H. and Mashhadi, M.M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717. https://doi.org/10.12989/scs.2019.33.5.717.   DOI
53 Thanh, C.-L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H. and Wahab, M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.   DOI
54 Wang, A., Chen, H., Hao, Y. and Zhang, W. (2018), "Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets", Results in Physics, 9, 550-559. https://doi.org/10.1016/j.rinp.2018.02.062.   DOI
55 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.   DOI
56 Gholipour, A. and Ghayesh, M.H. (2020), "Nonlinear coupled mechanics of functionally graded nanobeams", Int. J. Eng. Sci., 150, 103221. https://doi.org/10.1016/j.ijengsci.2020.103221.   DOI
57 Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001.   DOI
58 Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003.   DOI
59 Gholami, R. and Ansari, R. (2018), "On the Nonlinear Vibrations of Polymer Nanocomposite Rectangular Plates Reinforced by Graphene Nanoplatelets: A Unified Higher-Order Shear Deformable Model", Iranian J. Sci. Technol. T. Mech. Eng., 1-18. https://doi.org/10.1007/s40997-018-0182-9.
60 Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.   DOI
61 Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154 103339. https://doi.org/10.1016/j.ijengsci.2020.103339.   DOI
62 Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006.   DOI
63 Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2019), "Frequency response of initially deflected nanotubes conveying fluid via a nonlinear NSGT model", Struct. Eng. Mech., 72(1), 71-81. https://doi.org/10.12989/sem.2019.72.1.071.   DOI
64 Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2019), "Nonlocal nonlinear mechanics of imperfect carbon nanotubes", Int. J. Eng. Sci., 142, 201-215. https://doi.org/10.1016/j.ijengsci.2019.03.003.   DOI
65 Farzam, A. and Hassani, B. (2018), "Thermal and mechanical buckling analysis of FG carbon nanotube reinforced composite plates using modified couple stress theory and isogeometric approach", Compos. Struct., 206 774-790. https://doi.org/10.1016/j.compstruct.2018.08.030.   DOI
66 Fattahi, A., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.   DOI
67 Ghayesh, M.H. (2014), "Nonlinear size-dependent behaviour of single-walled carbon nanotubes", Appl. Physics A, 117(3), 1393-1399. https://doi.org/10.1007/s00339-014-8561-6.   DOI
68 Imran, M., Khan, R. and Badshah, S. (2018), "Finite Element Analysis to Investigate the Influence of Delamination Size, Stacking Sequence and Boundary Conditions on the Vibration Behavior of Composite Plate", Iranian J. Mater. Sci. Eng., 15(3), 11-21. https://doi.org/10.22068/ijmse.16.1.11.
69 Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473.   DOI
70 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.   DOI
71 Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.   DOI
72 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.   DOI
73 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.   DOI
74 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.   DOI
75 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech.-A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.   DOI
76 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192   DOI
77 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
78 Zhong, R., Wang, Q., Tang, J., Shuai, C. and Liang, Q. (2018), "Vibration characteristics of functionally graded carbon nanotube reinforced composite rectangular plates on Pasternak foundation with arbitrary boundary conditions and internal line supports", Curved Layered Struct., 5(1), 10-34. https://doi.org/10.1515/cls-2018-0002   DOI
79 Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. Part B: Eng., 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001.   DOI
80 Zhao, Z., Feng, C., Wang, Y. and Yang, J. (2017), "Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs)", Compos. Struct., 180, 799-808. https://doi.org/10.1016/j.compstruct.2017.08.044.   DOI
81 Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34 24-34. https://doi.org/10.1016/j.ast.2014.02.001.   DOI
82 Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Method. Appl. M., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767.   DOI
83 Mehar, K., Panda, S.K. and Sharma, N. (2020), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.   DOI
84 Karami, B., Gheisari, P., Nazemosadat, S.M.R., Akbari, P., Shahsavari, D. and Naghizadeh, M. (2020), "Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates", Struct. Eng. Mech., 74(6), 809-819. https://doi.org/10.12989/sem.2020.74.6.809.   DOI
85 Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.   DOI
86 Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R. and Tornabene, F. (2019), "Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes", Molecules, 24(15), 2750. https://doi.org/10.3390/molecules24152750.   DOI