Browse > Article
http://dx.doi.org/10.12989/aas.2016.3.1.001

Capabilities of 1D CUF-based models to analyse metallic/composite rotors  

Filippi, Matteo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Carrera, Erasmo (Department of Mechanical and Aerospace Engineering, Politecnico di Torino)
Publication Information
Advances in aircraft and spacecraft science / v.3, no.1, 2016 , pp. 1-14 More about this Journal
Abstract
The Carrera Unified Formulation (CUF) is here extended to perform free-vibrational analyses of rotating structures. CUF is a hierarchical formulation, which enables one to obtain refined structural theories by writing the unknown displacement variables using generic functions of the cross-section coordinates (x, z). In this work, Taylor-like expansions are used. The increase of the theory order leads to three-dimensional solutions while, the classical beam models can be obtained as particular cases of the linear theory. The Finite Element technique is used to solve the weak form of the three-dimensional differential equations of motion in terms of "fundamental nuclei", whose forms do not depend on the adopted approximation. Including both gyroscopic and stiffening contributions, structures rotating about either transversal or longitudinal axis can be considered. In particular, the dynamic characteristics of thin-walled cylinders and composite blades are investigated to predict the frequency variations with the rotational speed. The results reveal that the present one-dimensional approach combines a significant accuracy with a very low computational cost compared with 2D and 3D solutions. The advantages are especially evident when deformable and composite structures are analyzed.
Keywords
composites; carrera unified formulation; finite element method; rotordynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Banerjee, J. (2000), "Free vibration of centrifugally stiffened uniformand tapered beams using the dynamic stiffness method", J. Sound Vib., 233, 857-875.   DOI
2 Banerjee, J. (2001), "Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened Timoshenko beams", J. Sound Vib., 247, 97-115.   DOI
3 Banerjee, J. and Su, H. (2004), "Development of a dynamic stiffness matrix for free vibration analysis of spinning beams", Comput. Struct., 82, 2189-2197.   DOI
4 Banerjee, J., Su, H. and Jackson, D. (2006), "Free vibration of rotating tapered beams using the dynamic stiffness method", J. Sound Vib., 298, 1034-1054.   DOI
5 Bauer, H. (1980), "Vibration of a rotating uniform beam, part 1: Orientation in the axis of rotation", J. Sound Vib., 72, 177-189.   DOI
6 Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140.   DOI
7 Carrera, E. (2003), "Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking", Arch. Comput. Meth. Eng., 10(3), 215-296.   DOI
8 Carrera, E., Giunta, G. and Petrolo, M. (2011), Beam Structures, Classical and Advanced Theories, Wiley.
9 Carrera, E., Cinefra, M., Petrolo, M. and Zappino, E. (2014a), Finite Element analysis of structures through Unified Formulation, Wiley.
10 Carrera, E., Filippi, M. and Zappino, E. (2013a), "Analysis of rotor dynamic by one-dimensional variable kinematic theories", J. Eng. Gas Turb. Power, 135, 092501.   DOI
11 Carrera, E., Filippi, M. and Zappino, E. (2013b), "Free vibration analysis of rotating composite blades via carrera unified formulation", Compos. Struct., 106, 317-325.   DOI
12 Carrera, E. and Filippi, M. (2014b), "Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials", J. Eng. Gas Turb. Power, 136, 092501.   DOI
13 Carrera, E. and Filippi, M. (2015), "Vibration analysis of thin/thick, composites/metallic spinning cylindrical shells by refined beam models", J. Vib. Acoust., ASME, 137(3), 031020.   DOI
14 Chandiramani, N., Librescu, L. and Shete, C. (2002), "On the free-vibration of rotating composite beams using a higher-order shear formulation", Aerosp. Sci. Tech., 6, 545-561.   DOI
15 Chandiramani, N., Librescu, L. and Shete, C. (2003), "Vibration of higher-order-shearable pretwisted rotating composite blades", Int. J. Mech. Sci., 45, 2017-2041.   DOI
16 Combescure, D. and Lazarus, A. (2008), "Refined finite element modelling for the vibration analysis of large rotating machines: application to the gas turbine modular helium reactor power conversion unit", J. Sound Vib., 318(4), 1262-1280.   DOI
17 Chandra, R. and Chopra, I. (1992), "Experimental-theoretical investigation of the vibration characteristics of rotating composite box beams", J. Aircraf., 29, 657-664.   DOI
18 Chen, M. and Liao, Y. (1991), "Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints", J. Sound Vib., 147, 497-513.   DOI
19 Chen, Y., Zhao, H., Shen, Z., Grieger, I. and Kroplin, B.H. (1993), "Vibrations of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160, 137-160.   DOI
20 Curti, G., Raffa, F. and Vatta, F. (1991), "The dynamic stiffness matrix method in the analysis of rotating systems", Tribol. Tran., 34, 81-85.   DOI
21 Curti, G., Raffa, F. and Vatta, F. (1992), "An analytical approach to the dynamics of rotating shafts", Meccanica, 27, 285-292.   DOI
22 Genta, G., Chen, F. and Tonoli, A. (2010), "Dynamics behavior of rotating bladed discs: a finite element formulation for the study of second and higher order harmonics", J. Sound Vib., 329, 5289-5306.   DOI
23 Genta, G. and Tonoli, A. (1996), "A harmonic finite element for the analysis of flexural, torsional and axial rotordynamics behavior of discs", J. Sound Vib., 196, 19-43.   DOI
24 Guo, D., Chu, F. and Zheng, Z. (2001), "The influence of rotation on vibration of a thick cylindrical shell", J. Sound Vib., 242, 487-505.   DOI
25 Jung, S.N., Nagaraj, V. and Chopra, I. (1999), "Assessment of composite rotor blade modeling techniques", J. Am. Helicop. Soc., 44, 188-205.   DOI
26 Guo, D., Zheng, Z. and Chu, F. (2002), "Vibration analysis of spinning cylindrical shells by finite element method", Int. J. Solid. Struct., 39, 725-739.   DOI
27 Hodges, D. and Rutkowski, M. (1981), "Free-vibration analysis of rotating beams by a variable-order finiteelement method", AIAA J., 19, 1459-1466.   DOI
28 Jang, G.H., Lee, S.H. and Jung, M.S. (2002), "Free vibration analysis of a spinning flexible disk-spindle system supported by ball bearing and flexible shaft using the finite element method and substructure synthesis", J. Sound Vib., 251, 59-78.   DOI
29 Jung, S.N., Nagaraj, V. and Chopra, I. (2001), "Refined structural dynamics model for composite rotor blades", AIAA J., 39, 339-348   DOI
30 Lam, K.Y. and Loy, C.T. (1995), "Free vibrations of a rotating multilayered cylindrical shell", Int. J. Solid. Struct., 32, 647-663.   DOI
31 Mei, C. (2008), "Application of differential transformation technique to free vibration analysis of a centrifugally stiffened beam", Comput. Struct., 86, 1280-1284.   DOI
32 Na, S., Yoon, H. and Librescu, L. (2006), "Effect of taper ratio on vibration and stability of a composite thin-walled spinning shaft", Thin Wall. Struct., 44, 362-371.   DOI
33 Ozge, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler- Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670.   DOI
34 Song, O. and Librescu, L. (1997a), "Anisotropy and structural coupling on vibration and instability of spinning thin-walled beams", J. Sound Vib., 204, 477-494.   DOI
35 Ramezani, S. and Ahmadian, M. (2009), "Free vibration analysis of rotating laminated cylindrical shells under different boundary conditions using a combination of the layer-wise theory and wave propagation approach", Tran. B: Mech. Eng., 16, 168-176.
36 Rao, S. and Gupta, R. (2001), "Finite element vibration analysis of rotating Timoshenko beams", J. Sound Vib., 242, 103-124.   DOI
37 Saito, T. and Endo, M. (1985), "Vibration of finite length rotating cylindrical shells", J. Sound Vib., 107, 17-28.
38 Song, O. and Librescu, L. (1997b), "Structural modeling and free vibration analysis of rotating composite thin-walled beams", J. Am. Helicop. Soc., 42, 358-369.   DOI
39 Song, O., Librescu, L. and Jeong, N.H. (2000), "Vibration and stability of prestwisted spinning thin-walled composite beams featuring bending-bending elastic coupling", J. Sound Vib., 237, 513-533.   DOI
40 Yeo, H., Truong, K.V. and Ormiston, R.A. (2010), "Assessment of 1-D Versus 3-D Methods for Modeling Rotor Blade Structural Dynamics", 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Orlando, April.
41 Yoo, H.H., Lee, S.H. and Shin, S.H. (2005), "Flapwise bending vibration analysis of rotating multilayered composite beams", J. Sound Vib., 286, 745-761.   DOI