Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.1.081

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings  

Belbachir, Nasrine (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Draich, Kada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Bousahla, Abdelmoumen Anis (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Bourada, Mohamed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
Mohammadimehr, M. (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Steel and Composite Structures / v.33, no.1, 2019 , pp. 81-92 More about this Journal
Abstract
The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.
Keywords
anti-symmetric laminated plates; nonlinear thermo-mechanical loading; displacements; stresses;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Jones, R.M. (1999), Mechanics of Composite Materials, Taylor and Francis, London, UK.
2 Reddy, J.N. and Hsu, Y.S. (1980), "Effect of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stress., 3(4), 475-493. https://doi.org/10.1080/01495738008926984   DOI
3 Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2017a), "Static, free vibration and transient response of laminated composite curved shallow panel - An experimental approach", Eur. J. Mech.-A/Solids, 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014
4 Sahoo, S.S., Panda, S.K., Singh, V.K. and Mahapatra, T.R. (2017b), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87(2), 315-333. https://doi.org/10.1007/s00419-016-1195-8   DOI
5 Saidi, H., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., Int. J., 15(2), 221-245. https://doi.org/10.12989/scs.2013.15.2.221   DOI
6 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Natural Fibers, 1-15. https://doi.org/10.1080/15440478.2018.1503129
7 Boley, B.A. and Weiner, J.H. (1960), Theory of Thermal Stresses, John Wiley & Sons, New York, USA.
8 Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal bulcking of functionally graded sandwich plates", J. Sandw. Struct. Mater., 14(1), 5-33. https://doi.org/10.1177/1099636211426386   DOI
9 Cetkovic, M. (2015), "Thermo-mechanical bending of laminated composite and sandwich plates using layerwise displacement model", Compos. Struct., 125, 388-399. https://doi.org/10.1016/j.compstruct.2015.01.051   DOI
10 Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19, 93-110. https://doi.org/10.12989/scs.2015.19.1.093   DOI
11 Katariya, P., Hirwani, C.K. and Panda, S. (2018b), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3   DOI
12 Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new nonpolynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029   DOI
13 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygrothermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011   DOI
14 Katariya, P., Panda, S. and Mahapatra, T. (2018a), "Bending and vibration analysis of skew sandwich plate", Aircr. Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087   DOI
15 Khdeir, A.A. and Reddy, J.N.(1999), "Thermal stresses and deflections of cross-ply laminated plates using refined plate theories", J. Therm. Stress., 14(4), 419-438. https://doi.org/10.1080/01495739108927077   DOI
16 Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput. https://doi.org/10.1007/s00366-019-00836-8
17 Sayyad, A.S., Shinde, B.M. and Ghugal, Y.M. (2014), "Thermoelastic bending analysis of laminatedcomposite plates according to various sheardeformation theories", Open Eng., 5, 18-30.
18 Sayyad, A.S., Ghugal, Y.M. and Mhaske, B.A. (2015), "A four-Variable plate theory for thermoelastic bending of laminated composites plates", J. Therm. Stress., 38(8), 904-925. https://doi.org/10.1080/01495739.2015.1040310   DOI
19 Sayyad, A.S., Ghugal, Y.M. and Shinde, B.M. (2016), "Thermal stress analysis of laminated composite plates using exponential shear deformation theory", Int. J. Auto. Compos., 2(1), 23-40.
20 Chattibi, F., Benrahou, K.H., Benachour, A., Nedri, K. and Tounsi, A. (2015), "Thermomechanical effects on the bending of antisymmetric cross-ply composite plates using a four variable sinusoidal theory", Steel Compos. Struct., Int. J., 19(1), 93-110. https://doi.org/10.12989/scs.2015.19.1.093   DOI
21 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055   DOI
22 Dutta, G., Panda, S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: a finite element approach", Int. J. Appl. Computat. Math., 3(3), 2573-2592. https://doi.org/10.1007/s40819-016-0256-6   DOI
23 Wu, C.H. and Tauchert, T.R. (1890), "Thermo-elastic analysis of laminated plates.1: Symmetric specially orthotropic laminates", J. Therm. Stress., 3(2), 247-259. https://doi.org/10.1080/01495738008926966   DOI
24 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016   DOI
25 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlinear Dyn., 90, 479-492. https://doi.org/10.1007/s11071-017-3676-x   DOI
26 Kolahchi, R. and Moniri Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8   DOI
27 Shinde, B.M., Sayyad, A.S. and Kawade, A.B. (2013), "Thermal analysis of isotropic plates using hyperbolic shear deformation theory", Appl. Computat. Mech., 7, 193-204.
28 Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear flexural analysis of single/doubly curved smart composite shell panels integrated with PFRC actuator", Eur. J. Mech.-A/Solids, 60, 300-314. https://doi.org/10.1016/j.euromechsol.2016.08.006   DOI
29 Fares, M.E., Zenkour, A.M. and El-Marghani, M.Kh. (2000), "Non-linear thermal effects on the bending response of cross-ply laminated plates using refined first-order theory", Compos. Struct., 49, 257-267. https://doi.org/10.1016/S0263-8223(99)00137-3   DOI
30 Fares, M.E. and Zenkour, A.M. (1999), "Mixed variational formula for the thermal bending of laminated plates", J. Therm. Stress., 22,347-365. https://doi.org/10.1080/014957399280913   DOI
31 Gandhe, G.R., Salve, S.B., Pankade, P.M., Taur, P.G. and Tupe, D.H (2018), "Trigonometric shear deformation theory for thermal flexural analysis of isotropic plate", Procedia Manufact., 20, 499-504. https://doi.org/10.1016/j.promfg.2018.02.074   DOI
32 Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889   DOI
33 Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023   DOI
34 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016   DOI
35 Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-viscopiezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217731071
36 Mahapatra, T.R. and Panda, S.K. (2016), "Hygrothermal effects on the flexural strength of laminated composite cylindrical panels", IOP Conference Series: Materials Science and Engineering, 115(1), 012040. https://doi.org/10.1088/1757-899X/115/1/012040   DOI
37 Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Computat., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119   DOI
38 Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6   DOI
39 Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_2$ nano-particles", Wind Struct., Int. J., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043   DOI
40 Zenkour, A.M. (2004), "Analytical solution for bending of crossply laminated plates underthermo-mechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012   DOI
41 Zhen, W. and Chen, W.J. (2006), "An effcient higher-order theory and finite element forlaminated plates subjected to thermal loading", Compos. Struct., 73, 99-109. https://doi.org/10.1016/j.compstruct.2005.01.034   DOI
42 Zhen, W. and Xiaohui, R. (2016), "Thermomechanical analysis of multilayered plates in terms of Reddy-type higher-order theory", Mech. Adv. Mater. Struct., 24(14), 1196-1205. https://doi.org/10.1080/15376494.2016.1227491   DOI
43 Ghugal, Y.M. and Kulkarni, S.K. (2013c), "Thermal response of symmetric cross-ply laminated plates subjected to linear and non-linear thermo-mechanical loads", J. Therm. Stress., 36, 466-479. https://doi.org/10.1080/01495739.2013.770664   DOI
44 Ghugal, Y.M. and Kulkarni, S.K. (2012), "Effect of aspect ratio on transverse displacements for orthotropic and twolayer laminated plates subjected to non-linear thermal loads and mechanical loads", Int. J. Civil Struct. Eng., 3(1), 186-192.
45 Ghugal, Y.M. and Kulkarni, S.K. (2013a), "Thermal flexural analysis of cross- ply laminated platesusing trigonometric shear deformation theory", Latin Am. J. Solids Struct., 10, 1001-1023. http://dx.doi.org/10.1590/S1679-78252013000500008   DOI
46 Ghugal, Y.M. and Kulkarni, S.K. (2013b), "Flexural analysis of cross-ply laminated plates subjectedto nonlinear thermal and mechanical loadings", Acta Mech., 224, 675-690. https://doi.org/10.1007/s00707-012-0774-1   DOI
47 Fakhar, A. and Kolahchi, R. (2018), "Dynamic buckling of magnetorheological fluid integrated by visco-piezo-GPL reinforced plates", Int. J. Mech. Sci., 144, 788-799. https://doi.org/10.1016/j.ijmecsci.2018.06.036   DOI
48 Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally graded-carbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories", J. Sandw. Struct. Mater. https://doi.org/10.1177/1099636217720373
49 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compo. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032   DOI
50 Golabchi, H., Kolahchi, R., Rabani Bidgoli, M. (2018), "Vibration and instability analysis of pipes reinforced by $SiO_2$ nanoparticles considering agglomeration effects", Comput. Concrete, Int. J., 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431
51 Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018a), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002   DOI
52 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018b), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030   DOI
53 Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004   DOI
54 Han, J.W., Kim, J.S. and Cho, M. (2017), "New enhanced firstorder shear deformation theory for thermo-mechanical analysis of laminated and sandwich plates", Compos. Part B, 116, 422-450. https://doi.org/10.1016/j.compositesb.2016.10.087   DOI
55 Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035   DOI
56 Mahapatra, T.R., Kar, V.R.., Panda, S.K. and Mehar, K. (2017b), "Nonlinear thermoelastic deflection of temperature-dependent FGM curved shallow shell under nonlinear thermal loading", J. Thermal Stresses, 40(9), 1184-1199. https://doi.org/10.1088/1757-899X/178/1/012031   DOI
57 Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading - A Micromechanical Approach", Int. J. Computat. Methods, 13(3), 1650015. https://doi.org/10.1142/S0219876216500158   DOI
58 Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9   DOI
59 Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017a), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conference Series: Materials Science and Engineering, 178(1), 012031. https://doi.org/10.1088/1757-899X/178/1/012031   DOI
60 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057   DOI
61 Bachiri, A., Bourada, M., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2018), "Thermodynamic effect on the bending response ofelastic foundation FG plate by using a novel fourvariable refined plate theory", J. Therm. Stress., 41(8), 1042-1062. https://doi.org/10.1080/01495739.2018.1452169   DOI
62 Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., Int. J., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485
63 Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneou concrete blocks mixed by $SiO_2$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140   DOI
64 Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, Int. J., 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567   DOI
65 Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018a), "Delamination effect on flexural responses of layered curved shallow shell panelexperimental and numerical analysis", Int. J. Computat. Methods, 15(4), 1850027. https://doi.org/10.1142/S0219876218500275   DOI
66 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Scientia Iranica, 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525
67 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192   DOI
68 Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, New York, London, Tokyo.
69 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, Int. J., 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053   DOI
70 Hirwani, C.K., Mittal, H., Panda, S.K., Mahapatra, S.S., Mandal, S.K. and De, A.K. (2017), "Simulation study of stress and deformation behaviour of debonded laminated structure", IOP Conf. Series: Materials Science and Engineering, 178, 012005. https://doi.org/10.1088/1757-899X/178/1/012005   DOI
71 Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermomechanical deflection and stress responses of delaminated shallow shell structure using higher-order theories", Compos. Struct., 184, 135-145. https://doi.org/10.1016/j.compstruct.2017.09.071   DOI
72 Hirwani, C.K., Biswash, S., Mehar, K. and Panda, S.K. (2018c), "Numerical flexural strength analysis of thermally stressed delaminated composite structure under sinusoidal loading", IOP Conf. Series: Materials Science and Engineering, 338, 012019. https://doi.org/10.1088/1757-899X/338/1/012019   DOI
73 Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018d), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8   DOI
74 Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Low-dimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037   DOI