This study investigates how the GSP helps gifted and talented students understand geometric principles and concepts during the inquiry process in the generalization of the internal triangle, and how the students logically proceeded to visualize the content during the process of generalization. Four mathematically gifted students were chosen for the study. They investigated the pattern between the area of the original triangle and the area of the internal triangle with the ratio of each sides on m:n respectively. Digital audio, video and written data were collected and analyzed. From the analysis the researcher found four results. First, the visualization used the GSP helps the students to understand the geometric principles and concepts intuitively. Second, the GSP helps the students to develop their inductive reasoning skills by proving the various cases. Third, the lessons used GSP increases interest in apathetic students and improves their mathematical communication and self-efficiency.
Journal of Elementary Mathematics Education in Korea
/
v.17
no.2
/
pp.351-370
/
2013
The purpose of this study is to analyze the modes of visualization which appears in the process of thinking that mathematically gifted 6th grade students get to understand components of the three-dimensional shapes on the duality of regular polyhedrons, find the duality relation between the relations of such components, and further explore on whether such duality relation comes into existence in other regular polyhedrons. The results identified in this study are as follows: First, as components required for the process of exploring the duality relation of polyhedrons, there exist primary elements such as the number of faces, the number of vertexes, and the number of edges, and secondary elements such as the number of vertexes gathered at the same face and the number of faces gathered at the same vertex. Second, when exploring the duality relation of regular polyhedrons, mathematically gifted students solved the problems by using various modes of spatial visualization. They tried mainly to use visual distinction, dimension conversion, figure-background perception, position perception, ability to create a new thing, pattern transformation, and rearrangement. In this study, by investigating students' reactions which can appear in the process of exploring geometry problems and analyzing such reactions in conjunction with modes of visualization, modes of spatial visualization which are frequently used by a majority of students have been investigated and reactions relating to spatial visualization that a few students creatively used have been examined. Through such various reactions, the students' thinking in exploring three dimensional shapes could be understood.
The purpose of this study was to examine the thinking characteristics of mathematically gifted elementary school students in the process of modified prize-sharing problem solving and each student's thinking changes in the middle of discussion. To determine the relevance of the research task, 19 sixth graders enrolled in a local joint gifted class received instruction, and then 49 students took lessons. Out of them, 19 students attended a gifted education institution affiliated to local educational authorities, and 15 were in their fourth to sixth grades at a beginner's class in a science gifted education center affiliated to a university. 15 were in their fifth and sixth grades at an enrichment class in the same center. Two or three students who seemed to be highly attentive and express themselves clearly were selected from each group. Their behavioral and teaming characteristics were checked, and then an intensive observational case study was conducted with the help of an assistant researcher by videotaping their classes and having an interview. As a result of analyzing their thinking in the course of solving the modified prize-sharing problem, there were common denominators and differences among the student groups investigated, and each student was very distinctive in terms of problem-solving process and thinking level as well.
The purpose of this study was to examine mathematical performance predictions with gifted behavior ratings by teachers and parents. The participants of this study were 787 elementary 5th and 6th grade gifted students who took the mathematical performance test. This study asked gifted teachers and parents to rate gifted behaviors of these gifted students with using SRBCSS-R (Renzulli et al., 2002, 2009). The results indicated that gifted teachers rated gifted behaviors of the 5th grade gifted students higher than the 6th grade gifted students, except in 'mathematical characteristics.' Gifted teachers rated 'learning' gifted behaviors of male gifted students higher than those of female gifted students. In the meanwhile, parents of the 5th grade gifted students rated gifted behaviors higher than parents of the 6th grade gifted students in 'learning' and 'motivation.' In comparing the gifted behavior ratings by gifted teachers and parents, there were significant differences in 'learning' and 'motivation' ratings. That is, gifted teachers rated significantly higher 'learning' and 'motivation' of gifted students than parents. When this study explored the prediction of gifted behavior ratings by gifted teachers and parents on mathematical performances of gifted students, 'learning' and 'mathematical characteristics' ratings by gifted teachers predicted the mathematical performances of gifted students.
In this study, the instrument of mathematical thinking ability tests were considered, and the differences between gifted and regular high school students in the ability were investigated by the test. The instrument consists of 9 items, and verified its quality due to reliability. Participants were 353 regular and 252 gifted high school students from tenth grade. As a result, not only organizing ability of information but also ability of space perception and visualization and intuitive insight ability could be the characteristics of the mathematical giftedness.
The purpose of this study is to develop and utilize various kinds of mathematics teaching materials for gifted class in elementary school by utilizing polyominoes and a what-if-not strategy. Blokus is used to let students understand the characteristics of polyominoes, and omok is utilized to let them grasp interior point. Thus, the activities that utilized the new materials, blokus and omok, are developed to teach Pick's theorem. Besides, recreation activities were additionally prepared to provide education in an easy, intriguing and creative manner. The findings of the study is as follows: First, each of the materials was utilized in a different manner when the students engaged in basic and enrichment learning. Second, the mathematically gifted students were able to discover Pick's theorem in the course of utilizing the materials that contained recreational elements. Third, the students were taught to foster their problem-solving skills about area, girth and interior point by making use of the materials that were designed to be linked to each other. Fourth, existing programs were just designed to attain particular objects, to be conducted at a fixed time and to cater to particular graders. Fifth, when the students made problems by making use of the what if (not) strategy and the materials, they responded in diverse ways and were able to apply them.
This paper is to investigate how two elementary school teacher's belief mathematics as educational content, and teaching and learning mathematics as a part of educational methodology, and what the two teachers believe towards gifted children and their education, and what the classes demonstrate and its effects on the sociomathematical norms. To investigate this matter, the study has been conducted with two teachers who have long years of experience in teaching gifted children, but fall into different belief categories. The results of the study show that teacher A falls into the following category: the essentiality of mathematics as 'traditional', teaching mathematics as 'blended', and learning mathematics as 'traditional'. In addition, teacher A views mathematically gifted children as autonomous researchers with low achievement and believes that the teacher is a learning assistant. On the other hand, teacher B falls into the following category: the essentiality of mathematics as 'non-traditional', teaching mathematics as 'non-traditional, and learning mathematics as 'non-traditional.' Also, teacher B views mathematically gifted children as autonomous researchers with high achievement and believes that the teacher is a learning guide. In the teacher A's class for gifted elementary school students, problem solving rule and the answers were considered as important factors and sociomathematical norms that valued difficult arithmetic operation were demonstrated However, in the teacher B's class for gifted elementary school students, sociomathematical norms that valued the process of problem solving, mathematical explanations and justification more than the answers were demonstrated. Based on the results, the implications regarding the education of mathematically gifted students were investigated.
This study examined the proof levels and understanding of constituents of proving by three mathematically gifted 6th grade korean students, who belonged to the highest 1% in elementary school, through observation and interviews on the problem-solving process in relation to constructing a rectangle of which area equals the sum of two other rectangles. We assigned the students with Clairaut's geometric problems and analyzed their proof levels and their difficulties in thinking related to the understanding of constituents of proving. Analysis of data was made based on the proof level suggested by Waring (2000) and the constituents of proving presented by Galbraith(1981), Dreyfus & Hadas(1987), Seo(1999). As a result, we found out that the students recognized the meaning and necessity of proof, and they peformed some geometric proofs if only they had teacher's proper intervention.
This study set out to analyze and compare gifted elementary students and non-gifted students in emotional intelligence and creative nature. To understand the characteristics of the former, and provide assistance for career education for both groups. For this purpose, the three following research questions were set: First, what kind of difference is there in emotional intelligence between gifted elementary students and non-gifted students? Second, what kind of difference is there in creative nature between gifted elementary students and non-gifted students? Third, what is the connection between emotional intelligence and creative nature in gifted elementary students and non-gifted students? For this study, 102 students from the gifted class and 132 students from non-gifted classes were selected. In total 234 questionnaires were distributed, and the results were analyzed. The results of this study were as follows. First, as a result of the independent sample T-test, there were noticeable differences in giftedness. Gifted students scored significantly higher than non-gifted students in creative nature. Second, as a result of the independent sample T-test, there were noticeable differences in the creative nature of gifted and non-gifted students. Gifted students scored significantly higher than non-gifted students in creative nature. Third, by analyzing the results found for emotional intelligence and creative nature with Pearson's product-moment correlation, there was a positive correlation between both emotional intelligence and creative nature in both groups of results.
In this study, the instrument of mathematical problem posing ability and mathematical creativity ability tests were considered, and the differences between gifted and regular students in the ability were investigated by the test. The instrument consists of each 10 items and 5 items, and verified its quality due to reliability, validity and discrimination. Participants were 218 regular and 100 gifted students from seventh grade. As a result, not only problem solving but also mathematical creativity and problem posing could be the characteristics of the giftedness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.