• 제목/요약/키워드: the conditional Wiener integral

검색결과 48건 처리시간 0.023초

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

AN ANALOGUE OF WIENER MEASURE AND ITS APPLICATIONS

  • Im, Man-Kyu;Ryu, Kun-Sik
    • 대한수학회지
    • /
    • 제39권5호
    • /
    • pp.801-819
    • /
    • 2002
  • In this note, we establish a translation theorem in an analogue of Wiener space (C[0,t],$\omega$$\phi$) and find formulas for the conditional $\omega$$\phi$-integral given by the condition X(x) = (x(to), x(t$_1$),…, x(t$_{n}$)) which is the generalization of Chang and Chang's results in 1984. Moreover, we prove a translation theorem for the conditional $\omega$$\phi$-integral.l.

CONDITIONAL INTEGRAL TRANSFORMS OF FUNCTIONALS ON A FUNCTION SPACE OF TWO VARIABLES

  • Bong Jin, Kim
    • Korean Journal of Mathematics
    • /
    • 제30권4호
    • /
    • pp.593-601
    • /
    • 2022
  • Let C(Q) denote Yeh-Wiener space, the space of all real-valued continuous functions x(s, t) on Q ≡ [0, S] × [0, T] with x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. For each partition τ = τm,n = {(si, tj)|i = 1, . . . , m, j = 1, . . . , n} of Q with 0 = s0 < s1 < . . . < sm = S and 0 = t0 < t1 < . . . < tn = T, define a random vector Xτ : C(Q) → ℝmn by Xτ (x) = (x(s1, t1), . . . , x(sm, tn)). In this paper we study the conditional integral transform and the conditional convolution product for a class of cylinder type functionals defined on K(Q) with a given conditioning function Xτ above, where K(Q)is the space of all complex valued continuous functions of two variables on Q which satify x(s, 0) = x(0, t) = 0 for every (s, t) ∈ Q. In particular we derive a useful equation which allows to calculate the conditional integral transform of the conditional convolution product without ever actually calculating convolution product or conditional convolution product.

CONDITIONAL GENERALIZED WIENER MEASURES

  • Kang, Soon-Ja
    • 대한수학회보
    • /
    • 제28권2호
    • /
    • pp.147-161
    • /
    • 1991
  • In this paper we define the conditional generalized Wiener measure and then express the conditional generalized Wiener integral over this new measure. In particular we consider a conditional expectation of functionals of the generalized Brownian paths under the condition that the paths pass through the given points .xi.$_{1}$, .xi.$_{2}$, .., .xi.$_{n}$ at times t$_{1}$, t$_{2}$, .., t$_{n}$, respectively.ely.

  • PDF

INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS

  • Ryu, Kun-Sik
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.131-149
    • /
    • 2010
  • In 1992, the author introduced the definition and the properties of Wiener measure over paths in Wiener space and this measure was investigated extensively by some mathematicians. In 2002, the author and Dr. Im presented an article for analogue of Wiener measure and its applications which is the generalized theory of Wiener measure theory. In this note, we will derive the analogue of Wiener measure over paths in Wiener space and establish two integration formulae, one is similar to the Wiener integration formula and another is similar to simple formula for conditional Wiener integral. Furthermore, we will give some examples for our formulae.

A class of conditional analytic Feynman integrals

  • Chung, Dong-Myung;Kang, Si-Ho;Kang, Soon-Ja
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.175-190
    • /
    • 1996
  • In this paper we establish the existence of the conditional Feynman integral of certain functions which are not in the Banach algebra S of functions on Wiener space which are a kind of stochastic Fourier transform of complex Borel measures on $L^2[a, b]$. This result is used to provide the fundamental solution for the Schr$\ddot{o}$dinger equation for the forced harmonic potential.

  • PDF

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS FOR A GENERAL VECTOR-VALUED CONDITIONING FUNCTIONS

  • Kim, Bong Jin;Kim, Byoung Soo
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.573-586
    • /
    • 2016
  • We study the conditional integral transforms and conditional convolutions of functionals defined on K[0, T]. We consider a general vector-valued conditioning functions $X_k(x)=({\gamma}_1(x),{\ldots},{\gamma}_k(x))$ where ${\gamma}_j(x)$ are Gaussian random variables on the Wiener space which need not depend upon the values of x at only finitely many points in (0, T]. We then obtain several relationships and formulas for the conditioning functions that exist among conditional integral transform, conditional convolution and first variation of functionals in $E_{\sigma}$.

THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION SPACE WITH RESPECT TO AN INTEGRAL EQUATION

  • Chang, Seung-Jun;Lee, Sang-Deok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제4권1호
    • /
    • pp.47-60
    • /
    • 1997
  • In the theory of the conditional Wiener integral, the integrand is a functional of the standard Wiener process. In this paper we consider a conditional function space integral for functionals of more general stochastic process and the generalized Kac-Feynman integral equation. We first show that the existence of a partial differential equation. We then show that the generalized Kac-Feynman integral equation is equivalent to the partial differential equation.

  • PDF

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

Conditional Integral Transforms on a Function Space

  • Cho, Dong Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.413-431
    • /
    • 2012
  • Let $C^r[0,t]$ be the function space of the vector-valued continuous paths $x:[0,t]{\rightarrow}\mathbb{R}^r$ and define $X_t:C^r[0,t]{\rightarrow}\mathbb{R}^{(n+1)r}$ and $Y_t:C^r[0,t]{\rightarrow}\mathbb{R}^{nr}$ by $X_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}),\;x(t_n))$ and $Y_t(x)=(x(t_0),\;x(t_1),\;{\cdots},\;x(t_{n-1}))$, respectively, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n=t$. In the present paper, using two simple formulas for the conditional expectations over $C^r[0,t]$ with the conditioning functions $X_t$ and $Y_t$, we establish evaluation formulas for the analogue of the conditional analytic Fourier-Feynman transform for the function of the form $${\exp}\{{\int_o}^t{\theta}(s,\;x(s))\;d{\eta}(s)\}{\psi}(x(t)),\;x{\in}C^r[0,t]$$ where ${\eta}$ is a complex Borel measure on [0, t] and both ${\theta}(s,{\cdot})$ and ${\psi}$ are the Fourier-Stieltjes transforms of the complex Borel measures on $\mathbb{R}^r$.