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CONDITIONAL GENERALIZED WIENER MEASURES

SooN Ja KaNcG

1. Introduction and preliminaries

For a fixed T' € (0, 00), let Cp [0, T] be the space of all continuous
functions z on [0, T} vanishing at the origin. For each partition 0 = 75 <
71 <...<7p =T, aset of the type

(1.1) W ={zxeCy0,T]]| (z(r1),2(72),... ,z(m)) € B},

is called a strict interval of Cy [0, T if B = [].-,(ai, b;]. If B is a Borel
measurable subset of R", then W is called an interval of Cy [0, T]. The
collection R of all such strict intervals forms a semi-algebra of subsets
of Cq [0,T]. Let (Co [0, T], W, m,) denote the generalized Wiener space
where my is a probability measure on R defind for W as in (1.1) by

mg(W) 2/ g(T(),Tl,T2,... s TnyUp, UL, U2, . .. ,un)duldu2 ...dun
B
where

g(TO’leTZ)' ce 3 TpyUg, Uy, Ug, ... )un)

1
Ve T (B(n) - B(rim1))
1 i U —af{r;) — U1+« T,'__l)}2
exp [“5 ; {ui — a(n) (

B(ri) — B(Ti-1) ’

ug = 0, a(t) and S(t) are real valued continuous function on [0, T] such
that a(0) = 0,3(0) = 0 and f(¢) is strictly increasing; W is the o-
algebra of Caratheodory measurable subsets of Cy [0,T] with respect
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to the outer measure derived from the probability measure mgy which
contains the o-algebra o(R) generated by R.

We note that Cy [0, 7] is a separable Banach space with the supre-
mum norm and that o(R) = B(Cq [0, T)), Borel o-algebra in Cy [0, 7).

Let X be a R™-valued W-measurable function such that m,o0 X! =
Px < mp, where my is a Lebesgue measure on (R", M) and M is the
o-algebra of Lebesgue measurable sets in R". Let F' be a real valued
integrable function on C[0,T]. The conditional generalized Wiener
integral of F' given X, written E [F | X], is defined by the equivalence
class of Lebesgue measurable and Py integrable functions ¥ on R”™
modulo null functions on (R™, M, Px) such that for all C € M,

S F@ (@) = [ (@ apx (@),
X-1(C) c

By the Radon-Nikodym theorem such a funtction 1 exists and is
uniquely determind up to a null function on (R”, M, Px). We will let
E[F | X] denote a representation of the equivalence class and so

/ F(m)dmg(m):—-/ E[F | X](§)dPx(£), C e M.
X-1(C) c

J. Yeh [5,6] gave the inversion formula for the conditional Wiener
integrals and applied the formula to evaluate the conditional Wiener
integrals. C. Park and D. Skoug [4] obtained a simple formula for the
conditional Wiener integral when the conditioning function is vector
valued, which converts the conditional Wiener integrals to the noncon-
ditional Wiener integrals.

In this paper we define the conditional generalized Wiener measure
and then express the conditional generalized Wiener integral over this
new measure. In particular we consider a conditional expectation of
functionals of the generalized Brownian paths under the condition that
the paths pass through the given points &, &5, ... , €, at times t;, 15, ..
t,, respectively.
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2. Conditional generalized Wiener measures

Let 0 < s <t < Tandé&n € R. Let C,.¢;1,, denote the space
of continuous functions z with z(s) = ¢, z(t) = 5. Let d(z,y) =
maxs<r<¢ |2(7) — y(7)| be the metric on C, ¢.q,,.

Let B, ¢, be the Borel o-algebra generated by open sets for the
metric topology on Cogen. Let s =1 <7 <--- < 1, =t. Then the
o-algebra B, ¢.1 , is the smallest o-algebra containing the strict intervals

of the form
(2.1)

A={z € Cogyy | (z(n1),2(m2),... ,2(Ta_1)) € B}, B = H(a,-,b,-].

Let A be a strict interval given as (2.1). Define

(n—a(t) — £+ a(s))? }
2(8(t) — B(s))

bl bn—l
/ / (70, T1, .o« s Tnj U0, UL, . .. Uy ) dusdug -+ dup_q
ay An_1

(2:2) 1y g0n(A) = /3B = ﬁ(S))exp{

where ug = £, u,, = 5. It can be shown that My .4,y 18 countably addi-
tive on the semi-algebra R ¢, of strict intervals in Cs.¢;1,n- By using
the Caratheodory extention theorem we obtain a probability measure
Ms ¢t on the complete o-algebra Bs,f;m of subsets in Cs,¢;t,n, which
is called the conditional generalized Wiener measure with parameter ¢
and 7.

Let § = (t1,t2,... ,t,) and f: (&1,€2,. .. ,&n) be fixed vectors where
O=ti <ty <-- - <t, =T We consider the product measure space

n n
(C* = H Cti—l,fi—l;ti,fi’ B* = HBti_l,fe_l;t.',En
i=1 =1

n
* o 7
m- = Tt a6t &

i=1

where B* is the smallest o-algebra containing all measurable rectangles
ITio: Ai A € Bi:_\giystie; and o = 0.
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Let Cf,f = {z € Co[0,T] | z(ti) = &, = 1,2,... ,n}. Define a
map P : C* — Ct‘,{ by P(z1,z2,...,2:)(8) = xi(s), ti-1 < s < ti,
i =1,2,...,n. Then P is bijective. Let ’RR-E {VC C{'g | P~1(V) €
[Tj=1 Rt;_1.6 -1it; ¢ }- Then R; ¢ is the semi-algebra of sets of the form

V= {l‘ € Ct-’gl ($(T1),. e ’x(Tm(l)—l)’ $(Tm(1)+[),. .. ,.’E(Tm(g)__l),
m(n)

2(Tm@y 1) > T (Tmm-1)) € ] (a5,
j=1

J #£m(1),m(2),... ,m(n)},

where 7,3y = ti, ¢ = 1,2,... ,n. Furthermore it can be shown that
Rig=RNCpgand Bz = o0(R;z) = B(Co [0,7]) N C; ¢ Thus we can
define a measure m; gon R; £ by

23) mdV) = m (P (V)
- H m‘i-lrfi—l;tjyfj(Aj)
j=1

where P™1(V) = [[;o, Aiand 4; = {z € Cyy_, ¢;_i;t; ¢ | (#(Tm(G-1)41)5
m(j)—1
- Z(Tm(j)-1)) € Hiz(:n)(j—l)-{—l (ai,bi]}.

The measure m; fonR;¢ has a unique countably additive extension,

called the conditional Wiener measure with parameter E, which is yet
denoted as it is, to the complete o-algebra B;  of Ci e

THEOREM 2.1. Let X be a measurable function on (Co[0,T], W)
defined by

X(z) = (z(t), 2(t2), - .. ,z(tn)).

(1) Let F € L'(Cy [0,T],W,mg). Then the restriction Fg of F' on
C; ¢ is gt« g-measurable for a.e. £ and

(2.4) /C[Onp(x)dmg(z)=An ‘/C“F(a:)dmt-:é(m)dPX(f).
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Thus fC F(z)dm; -(x) exists a.e. E In particular, if F is

B(C [0, T])—measurable then Fg on C ¢ is By ¢ ~measurable.

(2) IfF € L'(Cy [0,T],W,m,), then there exmts a Vers1on E[F | X]
such that

(2.5) E[F|X)(6) = /c F(z)dm; ).

3

Proof. Let A = {E € B(Cy[0,T)) | the equality (2.4) hold for F' =
x£}. Then it is clear that A is a monotone class containing the algebra
of intervals in Cq [0, T]. Hence A = B(Co [0, T]) by the monotone class
theorem.

Let S be an my-null set. Then there exists a set N € B(Cq [0, 7))
such that S C N and my(N) = 0. Now observe that

¢

0=my(N)= /c 0.1 xn(z) dmy(z)
- / . /c xw(z) dmg dx)dPx (€)

since (2.4) holds for all xg, E € B(Cy[0,T}), and so

A

[ xw@)dmige) =migNaCrg =0 ne

Cz,{

Then

/C xs(z)dmydz) =m; SN C;z¢) =0 a.e. £.

0é
Thus we have

(2.6)
/ xs(z) dmg(z) = my(S) = 0
Col0,T]

= foo [ xste)amzga)drx(@)
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We note that W n C't~~ C B~~f0r a.e. f Thus for a Borel set B in R,

FR'(B)=F (B)NC;s€ By ae. €.

since F~1(B) € W and WnN Cig C By for ace. €. We also note that if
F is Borel-measurable in Cj [0, T] then Fp on C s is B; -rneasurable
on Cpez

Let E € W. Then there exist G and N in B(C, [0,T]) such that
E=GUS, SCN,my(N)=0and GNS = ¢. Now we obtain

[ xe(@)dmy(z) =my(GUS)
Col0,1]
=my(G) +my(S)
- / " / x6(@) + xs(a) dmy {z)dPx ()

- [ / Xous(z) dmy {)dPx(6)

- /R /Crxg(x)dmt—’g(ﬁf)dpx(g)-

Now that (2.4) holds when F' is any characteristic function of a set of
W we can follow the usual procedure in integration theory to show that
(2.4) holds for W measurable functions on Cy [0, 7] . This completes the
proof of (1).

For each Lebesque measurable set C' in R", we obtain, using (2.3),

[ Padm,() = L xxso@F (@) dn,)
X-1(0) Col0,T]
/ /“XC z))F(z) dmt f{cc)dPX( )
/ / F(z)dm;{z)dPx ()
=/ F(x)dmm{x)dpx({).
C CF,E
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But since F is integrable, E [F' | X|] exists and for any Lebesque mea-
surable set C' in R",

/ F(ac)dm_,,(x):/ EF | X)) dPx(§), CeM.
X-1(C) c

Hence we obtain a version of E [F | X] as in (2.5).
COROLLARY 2.1. B~~= wn C--forae f

Proof. 1t has been shown in the proof of Theorem 2.1 that B- 3

WOC- -for a.e. f Let N bea m~£—-null set. Then ther exists M € B
with N C M and my {M) = 0. Since Bz ¢ = B(Co [0, T)) N Co g M=
BﬂC~-and Be B(Cg [0,T]). Thus N C BﬂC'~ ~and since (2.4) holds
for B € B(C’o [0,T]), we have

(2.7) m,(B) = /R /C“XB(:c)dmt—’g(:c)dPx(f)
=/ med BN Crg) dPx () = 0.
Rﬂ

Hence this completes the proof.

REMARK. Note that for a.e. E, we have

28) EFIX@= [ Fa)dmde)

= AI F(P(z1,z2,...,%5)) H dm,j_l,fj_l;tj,fj(xj).

n
i=1 Ct; a6 15ty 085 =1

THEOREM 2.2. Let F' € LY(Cl g,4,, Bs,gt,9, ™ g5t,n)- Then
(2.9)

Fla()dmagun(@)= [ Plalr=s) + O dmise(®),

Catit,n t—s,n-§
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where (z + £)(1) = z(7) + €.

Proof. Let ¢ : Ci_spg — Cs,¢;t,n be the map defined by d(z)(7) =
z(t—s)+ £, s <1 <t Then ¢ is continuous under the metric topol-
ogy and so it is Bt_s,,,_f - B,,f;tm measurable. It is obvious from the
definitions of measure Mit—s,n-¢ and mapping ¢ that m, e, (V) =
My_sn-e(¢71(V)) for each interval V in Cs 1,y and so for all Borel
sets in C, ¢y .

We next note that for every My ¢;t,p-nUll set N in Cs gty Mo gi0,9(N)
=0iff m;_, 5 _¢(¢71(IN)) = 0. We can see that My gty = My_g g0~}
on B, ¢;1,9. Hence (2.9) is proved by using the change of variable formula.

We consider the map Tf: (Co[0,T],W,m,) — (CIE’B;E’ mt-‘g) de-
fined by

(2.10) Tez)(s) = 2(s) = [z](s) + [€](s), O<s<T
where [z] and [£] are the polygonal functions on [0, T] by

18) = 2(t5-0) + 7= a(t) — a(ty0)

and

< §—t;.
[€(s) = &1 + —2==(¢; — &21), 1 <s<t;
t—t,_
j :1,2,... y 1, {() = 0.
Then T is a continuous and surjective function. Thus T¢is B(Co [0,T7)
- B; ¢ measurable, and moreover W — B 7 & measurable by Theorem 2.3.
-1 —
THEOREM 2.3. mg 0 T5 =m;zon Bm-.

REMARK. The following theorem shows that the conditional gen-
eralized Wiener measure is nothing more than the pinned generalized
Wiener measure(i.e. probability measure induced by the tied down gen-
eralized Brownian Motion).
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Proof. Let V be a strict interval in Ct"é’ as in (2.2), i.e.

V = {1' [ CE',E' | (.T(Tl),il?(Tz), PN ,x(Tm(l)_l), 17(Tm(1)+1, PR ,.T(Tm(n)_l))

m(n)

€ H (aj, b;], 7 # m(1),m(2),...,m(n)}.

Then V € ’ﬁ,t« ¢ and we note that

T (V) = {z € Co[0,T] | Td=)(7y) € (aj, by],
j=1...,m(1)-1,m1)+1,... ,m(n) -1}
= {z € Co [0, T] | 2(7;) — [£)(5) + [E)(73) € (a;.b;],
i=12,...,m(1)-1,m1)+1,... ,m(n) — 1}

and {z(7) — [z](7) | t;-1 < 7 < t;},7 = 1,2,... ,n are independent
stochastic process[4]. Thus we write

(2.11)

mg o T (V) =[] mofe € Co[0,T] | 2(r;) — [=](73) + [](7y) € (a5, 5],

=1

J=m(E-1D)+1,mi-1)+2,... ,m(i) — 1}

where m(0) = 0. We now show that the right side of (2.11) is equal to

-

mg (V). To show this, let Wi = {z € Co [0, T] | z(;)—[=)(m3)+[)(7) €
(aj,b], s=m(i—1)+1,m(Z—1)+2,... ,m(:) - 1}. We need to prove
that mg(W;) = my,_, ¢:_,;1;,e.(Ai). Then we have

my, O TEI(V) = H M6ty 6 (Aj) =mT o P—l(v) = m{’,{(V)
j=1

for V € R; g since P-Y(V) = H;'zl A;. Hence it follows that mgoTE1 =

My e on Bff‘ Finally by nothing the fact that for any mt-.gnull set N
my on.'l(N) =m; {N) =0,
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we obtain the desired result, i.e. my 0 T-!' = My ¢ on g;g.

For simplicity, instead of proving for sets W; and A; we shall prove
mg(Wo) = my;_, g;_1:t:.¢:(Ao) for sets Wy and Ap of the following form

Wo = {z € G [0,T] | z(s;) — [z)(s;) + [E)(s;) € (aj,bj],
ti—1 < 85 <ti,jg=12,... ,k—l}
and
Ag = {.’z € Ct.'_uf.'_l;t.',f; | m(sj) € (aj’bj]’
tic1<s; <ti,j=12,... Jk — 1}

Now observe that

(2.12)
my(Wo) = /C PR TABELNG

_ /R " /C xw, (@) dmg (z)dPx (i)

€7

_ /R mg (Wo 0 Cy ) dPx (i)

= [ m*o (P (WonCy;))dPx(7)

Rﬂ
= R mt-‘—l,fli—ﬁtiﬂli(UO)dPX(ﬁ)
L[ ge-1
=/ g(ti—lyti;ni—l)ni)— / / §iS80y815--- 3 Sk; Uo,
" p1 Pr-1
Up, . .- ,uk)dulduz---duk_l] g(to,tr,tz, .- s tnimo, Ms T2, - - -

nn)dnl7 te adnn

where the second equality is obtained by (2.4) and the fifth equality
follows from

P—I(WO n Ct",ﬁ) =Ctym X Coypistans X0

-l
X Ct;_gmicasticimior X U0 X Cop i na_1itn,nns
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where

Uo = {2 € Cru_ymicrstorns | 2(s5) = [2](35) + [E)(35) € (aj,b51,
j=12,... Jk—1,6_4 < 8 <t,'}.

Also the upper and lower limits p;, ¢; of the last integral in (2.12) are
equal to

p; =a;+{(s; —ti1)/(ti —tica)Homi —mica — & + &im1) + mic1 — &ien
gj =b; + {(s; — ti—1)/(ti = ti=1)}(mi = nim1 — & + &i1) + mic1 — i1y

Ug = Ti—1, Uk = 74, So = tj1, Sk = tj.

Integrating the last integral of (2.12) over na,n-1,... ,7i+1 and then
N,72,. .- ,Ni—2, respectively, we have

@ qk—l
(213) myWo) = [ o(tesmisitin) [ [ gt
R? j 3 Pr-1
SkjUQy ... ,ug)durdug - - - dug_1dn;_1dn;.
In order to calculate the right side of (2.13), let

SJ' d ti—l
t; —ti

Vo = 1i—-1 = Up, Vg =17 = Uk

vj = Uy —

(uk_u()_Ei+£i—l)_u0+£i—laj =1923"' ,k__la

and then by applying the change of variable formula and integrating
with respect to v, vy, we have

(WU)_gt! Lt e 1’61)
b1 br-1
/ / 9(80,81,- -+ ,Sk;V0,V1,y-.. , V) dvrdrg - - dvg_g

= mti_l,f.’_ut.',f.'(AO)

where vo = &;_1, v = &i.
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COROLLARY 2.2. Let F € L*(Cy [0,T],W,my). Then

/;‘O[O,T] F(Tg(z))dm, =/ F(z)dm; {z).

3

Proof. The proof follows from Theorem 2.3 and the change of vari-
able formula.

3. Example

In this section we will give examples for evaluation.

(1) Let F(z) = [ (t)dt, z € C[0,T]

E (/OTx(t)duX(x):E)
:/F-/(;Tx(t)dtdmt-,g(a:)

n r t;
1= € L =1

:X:;/tt /C ‘x(t)d}n{,e{x)] dt

i€

n 6 T
= Z/; /c zi(t) dmt.-_l,E.-_l;t.-,f,-(a:)] dt
=1 -1 [V

€i—1iti &y

B Sl LG I ORpa—
_; - ﬁ(ti)_ﬂ(tiﬂl){ﬁt—l (tiz1)}

M c— alt; «
Bt = Bty (& et Halt)dt

where the fourth e.quality is justified by (2.8). In particular, if a(t) =0
and §(t) = t, then
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T AN Py
E (/0 z(t)dt | X(z) = 6) =3 > (& + &)t — tica).
i=1
Hence our result is the one in [4].

(2) Let F(z) = [ («(t))?dt, & € Co [0.T].

E (/oTx(t)'-’- dt | X(z) = 5)
-1, [ = dimegte
= i/tj / (1) dm; {(z) dt
_Z/t /C‘ zi(t) dmy;_ g1 6 (2) dt

j-1dj—1itdy

LS5, (B = BBl — B
"Z/ s B - Ay

j=1 ti-1
since

/; '(t)z dmtj—hfj —15t5,€; (xJ)
t.

J- 15, 1’ f,

(& —alty) ~ &i-1 +aft;—1))’
= \/Zﬂ(ﬂ(tj — ﬂ(tj_l))exP{ z(ﬂj(tj) — B(tj-1)) }

/R u?\J(2m)2(B(t) - B(t;—1))(B(t;) ~ B(2))
1[(u—a(t) = &i-1 + altj-1))?
P {"2 [ B(t) — B(t;—1)
(& = aty) —u+ )P
B — A ] }d
_ 2y B = B))(A) - B()
Bt;) - Bty
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where

:{ A(ts) — B(t)

Bt:) — Bltir) {€i-1 — a(tizy)}

B~ Btir) (o i)
e T 1 (t)}}+<t>

In particular, if a(t) = 0 and §(t) = ¢, then

T
E (/0 z(t)dt | X (z) = {)

" / (t=tim)(t = 1) | {(tH = -1+ (i) }zdt

(tj —t5-1) (t; —tj-1)

]1:1

z (ti — ; -1)° ?13_ Y (&G + &k + 6t — ti-1)
j=1

which is a result in [4].

(3) Let F(z) = exp {foT z(t)dt} , = € Co[0,T). Then

T
E (exp {/; x(t)dt} | X(z) = E)

- L{’Eexp{g/:;z(t)dt} dm; =)
_ /C (ir:[lexp{/tilm(t)dt} dm; =)

n t;
= exp / a:,-(t)dt} dm*(z1,...,%,)
/H?=1 Crionitiotiti g { tioy

n t;
= H/ exp{/ zi(t)dt} dmt.'_1,5.'_1;t.',fi(xi)'
Cy; i-16im1560,¢ ti
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